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We study the statistics of passive scalars (be either temperature or concentration of a diffusing7
substance) at friction Reynolds number Re𝜏 = 1140, for turbulent flow within a smooth8
straight pipe of circular cross–section, in the range of Prandtl numbers from Pr = 0.00625, to9
Pr = 16, using direct–numerical-simulation (DNS) of the Navier–Stokes equations. Whereas10
the organization of passive scalars is similar to the axial velocity field at Pr = 𝑂 (1), similarity11
is impaired at low Prandtl number, at which the buffer-layer dynamics is filtered out, and at12
high Prandtl number, at which the passive scalar fluctuations become confined to the near-13
wall layer. The mean scalar profiles at Pr ≳ 0.0125 are found to exhibit logarithmic overlap14
layers, and universal parabolic distributions in the core part of the flow. Near-universality of15
the eddy diffusivity is exploited to derive accurate predictive formulas for the mean scalar16
profiles, and for the corresponding logarithmic offset function. Asymptotic scaling formulas17
are derived for the thickness of the conductive (diffusive) layer, for the peak scalar variance,18
and its production rate. The DNS data are leveraged to synthesize a modified form of the19
classical predictive formula of Kader & Yaglom (1972), which is capable of accounting20
accurately for the dependence on both the Reynolds and the Prandtl number, for Pr ≳ 0.25.21

1. Introduction22

The study of passive scalars evolving within wall-bounded turbulent flows has great practical23
importance, being relevant for the behaviour of diluted contaminants, and/or as a model24
for the temperature field under the assumption of low Mach number and small temperature25
differences (Monin & Yaglom 1971; Cebeci & Bradshaw 1984). It is well known that26
measurements of concentration of passive tracers and of small temperature differences are27
quite difficult, and in fact available information about even basic passive scalar statistics are28
rather limited (Gowen & Smith 1967; Kader 1981; Subramanian & Antonia 1981; Nagano29
& Tagawa 1988), mostly including basic mean properties and overall mass or heat transfer30
coefficients. The physical understanding of passive scalars in turbulent flow mainly pertains31
to the case of Pr ≈ 1, (the molecular Prandtl number is here defined as the ratio of the32
kinematic viscosity to the thermal diffusivity, Pr = 𝜈/𝛼), for which strong analogies exists33
between passive scalars and the longitudinal velocity component, as verified in a number34
of studies (Kim et al. 1987; Abe & Antonia 2009; Antonia et al. 2009). However, many35
fluids, including water, engine oils, glycerol, and polymer melts have values of Pr which36

† Email address for correspondence: sergio.pirozzoli@uniroma1.it

Abstract must not spill onto p.2



2

can be significantly higher than unity, whereas in liquid metals and molten salts the Prandtl37
number can be much less than unity. In the case of diffusions of contaminants, the Prandtl38
number is replaced by the Schmidt number (namely, the ratio of kinematic viscosity to mass39
diffusivity), whose typical values in applications are always much higher than unity (Levich40
1962). Under such circumstances, similarity between velocity and passive scalar fluctuations41
is substantially impaired, which makes predictions of even the basic flow statistics quite42
difficult. In fact, the most complete predictive theory for the behaviour of passive scalars at43
non-unit Prandtl number relies heavily on classical studies (Levich 1962; Gowen & Smith44
1967; Kader & Yaglom 1972), and most predictive formulas for the heat transfer coefficients45
are based on semi-empirical power-law correlations (Dittus & Boelter 1933; Kays et al.46
1980). Although existing correlations may have sufficient accuracy for engineering design,47
their theoretical foundations are not firmly established. Furthermore, assumptions typically48
made in turbulence models such as constant turbulent Prandtl number are known to be crude49
approximations in the absence of reliable reference data.50

Given this scenario, DNS (direct–numerical-simulation) is the natural candidate to estab-51
lish a credible database for the physical analysis of passive scalars in wall turbulence, and52
for the development and validation of phenomenological prediction formulas and turbulence53
models. Most DNS studies of passive scalars in wall turbulence have been so far carried out54
for the prototype case of planar channel flow, starting with the work of Kim & Moin (1989),55
at Re𝜏 = 180 (here Re𝜏 = 𝑢𝜏ℎ/𝜈 is the friction Reynolds number, with 𝑢𝜏 = (𝜏𝑤/𝜌)1/2 the56
friction velocity, ℎ the channel half-height, 𝜈 the fluid kinematic viscosity, 𝜌 the fluid density,57
and 𝜏𝑤 the wall shear stress), in which the forcing of the scalar field was achieved using a58
spatially and temporally uniform source term. Additional DNS at increasingly high Reynolds59
number were carried out by Kawamura et al. (1999); Abe et al. (2004), based on enforcement60
of strictly constant heat flux in time (this approach is hereafter referred to as CHF), which61
first allowed to appreciate scale separation effects, and to educe a reasonable value of the62
scalar von Kármán constant 𝑘 𝜃 ≈ 0.43, as well as effects of Prandtl number variation. Those63
studies showed close similarity between the streamwise velocity and passive scalar field in64
the near-wall region, as after the classical Reynolds analogy. Specifically, the scalar field65
was found to be organized into streaks whose size scales in wall units, with a correlation66
coefficient between streamwise velocity fluctuations and scalar fluctuations close to unit.67
Computationally high Reynolds numbers (Re𝜏 ≈ 4000, with Pr ⩽ 1) were reached in the68
study of Pirozzoli et al. (2016), using spatially uniform forcing in such a way as to maintain69
the bulk temperature constant in time (this approach is hereafter referred to as CMT). Recent70
large-scale channel flow DNS with passive scalars using the CHF forcing at Pr = 0.71 (as71
representative of air) have been carried out by Alcántara-Ávila et al. (2021). Prandtl number72
effects in plane channel flow were further addressed by Schwertfirm & Manhart (2007);73
Alcántara-Ávila et al. (2018); Abe & Antonia (2019); Alcántara-Ávila & Hoyas (2021),74
which we will refer to for comparison.75

Flow in a circular pipe is clearly more practically relevant than plane channel flow in view76
of applications as heat exchangers, and it has been the subject of a number of experimental77
studies, mainly aimed at predicting the heat transfer coefficient as a function of the bulk flow78
Reynolds number (Kays et al. 1980). High-fidelity numerical simulations including passive79
scalars in pipe flow have been so far quite scarce, and mainly limited to Re𝜏 ⩽ 1000 (Piller80
2005; Redjem-Saad et al. 2007; Saha et al. 2011; Antoranz et al. 2015; Straub et al. 2019).81
Higher Reynolds numbers (up to Re𝜏 = 6000) have been carried out by Pirozzoli et al.82
(2022), however at unit Prandtl numbers. Those DNS confirmed general similarity between83
the axial velocity field and the passive scalar field, however the latter was found to have84
additional energy at small wavenumbers, resulting in higher mixedness. Logarithmic growth85
of the inner-scaled bulk and mean centreline scalar values with the friction Reynolds number86
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Figure 1: Definition of coordinate system for DNS of pipe flow. 𝑧, 𝑟 , 𝜙 are the axial, radial
and azimuthal directions, respectively. 𝑅 is the pipe radius, 𝐿𝑧 the pipe length, and 𝑢𝑏 is

the bulk velocity.

was found, implying an estimated scalar von Kármán constant 𝑘 𝜃 ≈ 0.459, similar to what87
found in plane channel flow (Pirozzoli et al. 2016; Alcántara-Ávila et al. 2021). The DNS88
data were also used to synthesize a modified form of the classical predictive formula of Kader89
& Yaglom (1972). It appears that DNS data of pipe flow at both high and low Prandtl number90
has not been intensely explored, despite its importance.91

In this paper, we thus present novel DNS data of turbulent flow in a smooth circular pipe at92
moderate Reynolds number Re𝜏 = 1140, however high enough that a state of fully developed93
turbulence is established, with a near-logarithmic region of the mean velocity profile. A94
wide range of Prandtl numbers is considered, from Pr = 0.00625 to Pr = 16, such that95
some asymptotic properties for vanishing and very high Prandtl number can be inferred. This96
study complements our previous study about Reynolds number effects (up to Re𝜏 ≈ 6000)97
for passive scalars at Pr = 1 (Pirozzoli et al. 2022), allowing predictive extrapolations to the98
full range of Reynolds and Prandtl numbers. Although, as previously pointed out, the study99
of passive scalars is relevant in several contexts, one of the primary fields of application100
is heat transfer, and therefore from now on we will refer to the passive scalar field as the101
temperature field (denoted as 𝑇), and scalar fluxes will be interpreted as heat fluxes.102

2. The numerical dataset103

Numerical simulations of fully developed turbulent flow in a circular pipe are carried out104
assuming periodic boundary conditions in the axial (𝑧) and azimuthal (𝜙) directions, as105
shown in figure 1. The velocity field is controlled by two parameters, namely the bulk106
Reynolds number (Re𝑏 = 2𝑅𝑢𝑏/𝜈, with 𝑢𝑏 the bulk velocity, namely averaged over the cross107
section), and the relative pipe length, 𝐿𝑧/𝑅. The incompressible Navier–Stokes equations are108
supplemented with the transport equation for a passive scalar field (hence, buoyancy effects109
are disregarded), with different values of the thermal diffusivity (hence, various Pr), and110
with isothermal boundary conditions at the pipe wall (𝑟 = 𝑅). The passive scalar equation111
is forced through a time-varying, spatially uniform source term (CMT approach), in the112
interest of achieving complete similarity with the streamwise momentum equation, with113
obvious exclusion of pressure. Although the total heat flux resulting from the CMT approach114
is not strictly constant in time, it oscillates around its mean value under statistically steady115
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conditions. Differences of the results obtained with the CMT and CHF approaches have116
been pinpointed by Abe & Antonia (2017); Alcántara-Ávila et al. (2021), which although117
generally small deserve some attention.118

The computer code used for the DNS is the evolution of the solver originally developed by119
Verzicco & Orlandi (1996), and used for DNS of pipe flow by Orlandi & Fatica (1997).120
The solver relies on second-order finite-difference discretization of the incompressible121
Navier–Stokes equations in cylindrical coordinates based on the classical marker-and-cell122
method (Harlow & Welch 1965), whereby pressure and passive scalars are located at the cell123
centers, whereas the velocity components are located at the cell faces, thus removing odd-even124
decoupling phenomena and guaranteeing discrete conservation of the total kinetic energy and125
passive scalar variance in the inviscid limit. The Poisson equation resulting from enforcement126
of the divergence-free condition is efficiently solved by double trigonometric expansion in127
the periodic axial and azimuthal directions, and inversion of tridiagonal matrices in the radial128
direction (Kim & Moin 1985). A crucial computational issue is the proper treatment of the129
polar singularity at the pipe axis, which we handle as suggested by Verzicco & Orlandi130
(1996), by replacing the radial velocity 𝑢𝑟 in the governing equations with 𝑞𝑟 = 𝑟𝑢𝑟 (𝑟131
is the radial space coordinate), which by construction vanishes at the axis. The governing132
equations are advanced in time by means of a hybrid third-order low-storage Runge-Kutta133
algorithm, whereby the diffusive terms are handled implicitly, and convective terms in the134
axial and radial direction explicitly. An important issue in this respect is the convective135
time step limitation in the azimuthal direction, due to intrinsic shrinking of the cells size136
toward the pipe axis. To alleviate this limitation, we use implicit treatment of the convective137
terms in the azimuthal direction (Akselvoll & Moin 1996; Wu & Moin 2008), which enables138
marching in time with similar time step as in planar domains flow in practical computations.139
In order to minimize numerical errors associated with implicit time stepping, explicit and140
implicit discretizations of the azimuthal convective terms are linearly blended with the radial141
coordinate, in such a way that near the pipe wall the treatment is fully explicit, and near the142
pipe axis it is fully implicit. The code was adapted to run on clusters of graphic accelerators143
(GPUs), using a combination of CUDA Fortran and OpenACC directives, and relying on the144
CUFFT libraries for efficient execution of FFTs (Ruetsch & Fatica 2014).145

From now on, inner normalization of the flow properties will be denoted with the ’+’146
superscript, whereby velocities are scaled by 𝑢𝜏 , wall distances (𝑦 = 𝑅 − 𝑟) by 𝜈/𝑢𝜏 , and147
temperatures with respect to the friction temperature,148

𝑇𝜏 =
𝛼

𝑢𝜏

〈
d𝑇
d𝑦

〉
𝑤

. (2.1)149

In particular, the inner-scaled temperature is defined as 𝜃+ = (𝑇 − 𝑇𝑤)/𝑇𝜏 , where 𝑇 is the150
local temperature, and 𝑇𝑤 is the wall temperature. Capital letters will used to denote flow151
properties averaged in the homogeneous spatial directions and in time, brackets to denote the152
averaging operator, and lower-case letters to denote fluctuations from the mean. Instantaneous153
values will be denoted with a tilde, e.g. 𝜃 = Θ + 𝜃. The bulk values of axial velocity and154
temperature are defined as155

𝑢𝑏 = 2
∫ 𝑅

0
𝑟 ⟨𝑢𝑧⟩ d𝑟

/
𝑅2 , 𝑇𝑏 = 2

∫ 𝑅

0
𝑟 ⟨𝑇⟩ d𝑟

/
𝑅2 . (2.2)156

A list of the main simulations that we have carried out is given in table 1. Eleven values157
of the Prandtl numbers are considered, from Pr = 0.00625 to 16. The pipe length was set158
to 𝐿𝑧 = 15𝑅 for all the flow cases, based on a box sensitivity study (Pirozzoli et al. 2022).159
The mesh resolution is designed based on the criteria discussed by Pirozzoli & Orlandi160
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Prandtl number Mesh (𝑁𝑧 × 𝑁𝑟 × 𝑁𝜙) Pe𝜏 Nu # ETT Line style

0.00625 1792 × 164 × 1793 7.11 8.02 21.3
0.0125 1792 × 164 × 1793 14.2 9.41 23.1
0.025 1792 × 164 × 1793 28.5 12.6 36.0
0.0625 1792 × 164 × 1793 71.1 21.5 23.1
0.125 1792 × 164 × 1793 142.2 34.2 12.9
0.25 1792 × 164 × 1793 284.4 53.8 47.7
0.5 1792 × 164 × 1793 568.8 81.7 20.6
1 1792 × 164 × 1793 1137.6 119.9 38.1
2 3584 × 269 × 3584 2275.2 168.0 14.2
4 3584 × 269 × 3584 4550.4 233.3 10.6
16 7168 × 441 × 7168 18201.6 421.2 9.51

Table 1: Flow parameters for DNS of pipe flow at various Prandtl number. 𝑁𝑧 , 𝑁𝑟 , 𝑁𝜙
denote the number of grid points in the axial, radial, and azimuthal directions,

respectively; Pe𝜏 = Pr Re𝜏 is the friction Péclet number; Nu is the Nusselt number (as
defined in equation (3.25)); and ETT is the time interval considered to collect the flow

statistics, in units of the eddy-turnover time, namely 𝑅/𝑢𝜏 . For all simulations, 𝐿𝑧 = 15𝑅,
Re𝑏 = 44000, Re𝜏 = 1137.6.

(2021). In particular, the collocation points are distributed in the wall-normal direction so161
that approximately thirty points are placed within 𝑦+ ⩽ 40, with the first grid point at162
𝑦+ < 0.1, and the mesh is progressively stretched in the outer wall layer in such a way163
that the mesh spacing is proportional to the local Kolmogorov length scale, which there164

varies as 𝜂+ ≈ 0.8 𝑦+1/4 (Jiménez 2018). Regarding the axial and azimuthal directions,165
finite-difference simulations of wall-bounded flows yield grid-independent results as long as166
Δ𝑧+ ≈ 10, 𝑅+Δ𝜙 ≈ 4.5 (Pirozzoli et al. 2016), hence we have selected the number of grid167
points along the homogeneous flow directions as 𝑁𝑧 = 𝐿𝑧/𝑅×Re𝜏/9.8, 𝑁𝜙 ∼ 2𝜋×Re𝜏/4.1.168
A finer mesh is used for flow cases with Pr > 1, so as to satisfy restrictions on the Batchelor169
scalar dissipative scale, whose ratio to the Kolmogorov scale is about Pr−1/2 (Batchelor170
1959; Tennekes & Lumley 1972).171

According to the established practice (Hoyas & Jiménez 2006; Lee & Moser 2015; Ahn172
et al. 2015), the time intervals used to collect the flow statistics are reported as a fraction173
of the eddy-turnover time (𝑅/𝑢𝜏). The sampling errors for some key properties discussed174
in this paper have been estimated using the method of Russo & Luchini (2017), based on175
extension of the classical batch means approach. We have found that the sampling error is176
generally quite limited, being larger in the largest DNS, which are however carried out over177
a shorter time interval. In particular, in the Pr = 16 flow case the expected sampling error178
in Nusselt number, centreline temperature and peak temperature variance is approximately179
0.5%. In order to quantify uncertainties associated with numerical discretization, additional180
simulations have been carried out by doubling the number of grid points in the azimuthal,181
radial and axial directions, respectively. The results show that the uncertainty due to numerical182
discretization and limited pipe length to be approximately 0.2% for the Nusselt number, 0.4%183
for the pipe centreline temperature, and 0.7% for the peak temperature variance.184



6
�̃�𝑧/𝑈𝐶𝐿 , 𝜃/Θ𝐶𝐿

(a) (b)

(c) (d)
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Figure 2: Instantaneous axial velocity contours (a), and temperature contours for
Pr = 0.00625 (b), Pr = 0.25 (c), Pr = 1 (d), Pr = 4 (e), Pr = 16 (f), each normalized by
the mean value at the pipe axis. The near-wall contours are taken at a distance 𝑦+ = 15.
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Figure 3: Instantaneous axial velocity contours (a), and temperature contours for
Pr = 0.00625 (b), Pr = 0.25 (c), Pr = 1 (d), Pr = 4 (e), Pr = 16 (f), in a cross-sectional

plane, each normalized by the mean value at the pipe axis.
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Figure 4: Instantaneous axial velocity contours (a), and temperature contours for
Pr = 0.00625 (b), Pr = 0.25 (c), Pr = 1 (d), Pr = 4 (e), Pr = 16 (f), in a subregion of the

pipe cross section, each normalized by the mean value at the pipe axis.
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3. Results185

3.1. General organization of the temperature field186

Qualitative information about the organization of the flow field is provided by instantaneous187
perspective views of the axial velocity and temperature fields, which we show in figures 2,3,4.188
As well known, the flow near the pipe wall is dominated by streaks of alternating high- and189
low-speed fluid, which are the hallmark of wall-bounded turbulence (panel (a), see Kline190
et al. 1967). The temperature field at unit Prandtl number (panel (d)) exhibits a similar191
organization, which is not surprising on account of close formal similarity of passive scalar192
and axial momentum equations at Pr = 1, and close association of the two quantities was193
indeed pointed out in many previous studies (Abe & Antonia 2009; Pirozzoli et al. 2016;194
Alcántara-Ávila et al. 2018, e.g.). Zooming closer (see figure 4), one will nevertheless detect195
differences between the two fields, in that temperature tends to form sharper fronts, whereas196
the axial velocity field tends to be more blurred. As noted by Pirozzoli et al. (2016), this is197
due to the fact that the axial velocity is not simply passively advected, but rather it can react198
to the formation of fronts through feedback pressure. This reflects into shallower spectral199
ranges than Kolmogorov’s 𝑘−5/3 (Pirozzoli et al. 2022). Thermal streaks persist at Pr > 1200
(panels (e), (f)), and seem to retain a similar organization as in the case of unit Prandtl201
number. However, they tend to vanish at low Prandtl number (panels (b),(c)), and are totally202
suppressed at Pr = 0.00625, as a result of scalar diffusivity overwhelming turbulent agitation.203
The flow in the cross-stream planes (figures 3,4) is characterized by sweeps of high-speed204
fluid from the pipe core and ejections of low-speed fluid from the wall. Ejections and sweep205
have a clearly multi-scale nature, as some of them are confined to the buffer layer, whereas206
others manage to protrude up to the pipe centreline. At very low Prandtl number (panel (b))207
turbulence is barely capable of perturbing the otherwise purely diffusive behaviour of the208
temperature field. The presence of details on a finer and finer scale is evident at increasing Pr,209
on account of the previously noted reduction of the Batchelor scale. Increase of the Prandtl210
number also yields progressive equalization of the temperature field over the cross section.211
As a result, the large-scale eddies become weaker, and thermal agitation becomes mainly212
confined to the wall vicinity, within a layer whose thickness is proportional to the conductive213
sublayer thickness, which will be extensively discussed afterwards.214

The above scenario is substantiated by the spectral maps of 𝑢𝑧 and 𝜃, which are depicted in215
figure 5. The axial velocity spectra (panel (a)) clearly bring out a two-scale organization, with216
a near-wall peak associated with the wall regeneration cycle (Jiménez & Pinelli 1999), and217
an outer peak associated with outer-layer large-scale motions (Hutchins & Marusic 2007).218
The latter peak is found to be centered around 𝑦/𝑅 ≈ 0.22, and to correspond to eddies219
with typical wavelength 𝜆𝜙 ≈ 1.25𝑅. Notably, very similar organization is found in the220
temperature field at unit Prandtl number (panel (d)), the main difference being a less distinct221
energy peak at large wavelengths. Both the axial velocity and the temperature field exhibit a222
prominent spectral ridge corresponding to modes with typical azimuthal length scale 𝜆𝜙 ∼ 𝑦,223
extending over more than one decade, which can be interpreted as the footprint of a hierarchy224
of wall-attached eddies as after Tonwsend’s hypothesis (Townsend 1976). The spectral maps225
are however quite different at non-unit Prandtl number. At very low Prandtl number (panel226
(b)) all the small scales of thermal motion are filtered out by the large thermal diffusivity, and227
hints of organization are only found at the largest scales. The typical azimuthal length scale228
of these eddies appears to be 𝜆𝜙 = 𝜋𝑅, hence only two pairs of eddies are found in average.229
At Pr = 0.25 (panel (c)) a clear wall-attached spectral ridge is observed, meaning that230
temperature field becomes in tune with the wall-attached eddies of Townsend’s hierarchy.231
However, no buffer-layer peak is observed. At Prandtl number higher than unity (panels232
(e),(f)), temperature fluctuations instead become much more energetic within the buffer233
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(a) (b)

(c) (d)

(e) (f)

Figure 5: Variation of pre-multiplied spanwise spectral densities with wall distance for the
axial velocity field (a), and for the temperature field corresponding to Pr = 0.00625 (b),

Pr = 0.25 (c), Pr = 1 (d), Pr = 4 (e), Pr = 16 (f). For the sake of comparison, each field is
normalized by its maximum value, and ten contours are shown. Wall distances (𝑦) and
azimuthal wavelengths (𝜆𝜙) are reported both in inner units (bottom, left), and in outer

units (top, right). The crosses denote the location of the inner and outer energy sites in the
axial velocity spectral maps.

layer. Specifically, the inner-layer peak moves closer to the wall, and the streaks spacing234
is reduced as compared to the Pr = 1 case. Although large-scale outer motions seem to be235
absent in the selected representation (each spectrum is normalized by the corresponding peak236
value), reporting the same maps in the same range of values would show that the spectral237
footprint in the outer region is similar at all Prandtl numbers, with exception of the lowest238
values. This is also well portrayed in the distributions of the integrated energy (see figure 12).239

240

Rapids articles must not exceed this page length



Prandtl number effects in thermal pipe flow 11

(a) (b)

(c) (d)

(e) (f)

Figure 6: Variation of pre-multiplied axial spectral densities with wall distance for the
axial velocity field (a), and for the temperature field corresponding to Pr = 0.00625 (b),

Pr = 0.25 (c), Pr = 1 (d), Pr = 4 (e), Pr = 16 (f). For the sake of comparison, each field is
normalized by its maximum value, and ten contours are shown. Wall distances (𝑦) and
axial wavelengths (𝜆𝑧) are reported both in inner units (bottom, left), and in outer units

(top, right). The vertical dashed lines mark the peak wavelength in the spectra of the axial
velocity (𝜆+𝑧 ≈ 820).

It is interesting that the spectral densities along the axial direction, shown in figure 6, still241
show shift of the main energetic site along the vertical direction with the Prandtl number,242
however the typical axial length scale is weakly affected. This relative insensitivity is also243
clear looking at the streaks meandering in figure 2. The different behavior of the azimuthal244
and axial spectra can be explained by interpreting the temperature field as resulting from245
application of a filter to the velocity field. Variation of the Prandtl number has then the effect246
of changing the filter cutoff. Since the azimuthal scale of the streaks is comparatively smaller247
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Figure 7: Inner-scaled mean temperature profiles (a), and corresponding defect profiles (b).
The dashed grey line in panel (a) refers to the assumed logarithmic wall law for Pr = 1,

namely Θ+ = log 𝑦+/0.459 + 6.14. In panel (b) the dash-dotted grey line marks a parabolic
fit of the DNS data (Θ+

𝐶𝐿
−Θ+ = 6.62(1− 𝑦/𝑅)2), and the dashed grey line the outer-layer

logarithmic fit Θ+
𝐶𝐿

− Θ+ = 0.732 − 1/0.459 log(𝑦/𝑅). See table 1 for colour codes.

the effect of filtering is more evident, whereas the longitudinal scale associated with streaks248
meandering is much larger, hence the effect of filtering is less visible, unless very low Prandtl249
numbers are considered.250

3.2. Temperature statistics251

The mean temperature profiles in turbulent pipes have received extensive attention from252
theoretical and experimental studies, and the general consensus (Kader 1981), is that a253
logarithmic law is a good approximation in the overlap layer, for most practical purposes.254
The recent study of Pirozzoli et al. (2021) has shown that, at unit Prandtl number, the255
logarithmic law fits well with the mean temperature profile in the overlap layer, with Kármán256
constant 𝑘 𝜃 = 0.459, which is distinctly larger than for the axial velocity field, namely257
𝑘 = 0.387. Figure 7(a) confirms, as is well known, that universality with respect to Pr258
variations is not achieved in inner scaling, since the asymptotic behaviour in the conductive259
sublayer is Θ+ ≈ Pr 𝑦+ (see, e.g. Kawamura et al. 1998). The figure also shows that visually260
logarithmic distributions are obtained in a wide range of Prandtl numbers, namely261

Θ+ =
1
𝑘 𝜃

log 𝑦+ + 𝛽(Pr), (3.1)262

with clear change of the additive constant 𝛽, as pointed out by Kader & Yaglom (1972). The263
effect of Prandtl number variation on the outer layer is analysed in figure 7(b), where we264
show the mean temperature profiles in defect form, namely in terms of difference from the265
centreline value. Assuming 𝑦+ = 100 to be the root of the logarithmic layer for the mean266
velocity profile (Pirozzoli et al. 2021), this amounts for the flow cases herein considered to267
𝑦/𝑅 ≈ 0.11. The figure shows that scatter across the defect temperature profiles at various268
Pr is quite small farther from the wall, which suggests that outer-layer similarity applies with269
good precision in general. Departures from outer-layer universality are observed starting270
at Pr ≲ 0.025, below which the similarity region becomes narrower and progressively271
confined to the region around the pipe axis. As suggested by Pirozzoli (2014); Orlandi et al.272
(2015), the core velocity and temperature profiles can be closely approximated with simple273
universal quadratic distributions, which one can derive under the assumption of constant274
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Figure 8: Distributions of inferred eddy thermal diffusivity (𝛼𝑡 ) as a function of wall
distance. In panel (a) the black dotted line denotes 𝛼𝑡 for the case Re𝜏 = 6000, at

Pr = 1 (Pirozzoli et al. 2022), and the gray dashed lines denote the asymptotic trends
𝛼+𝑡 ∼ 𝑦3 towards the wall, and 𝛼+𝑡 = 𝑘 𝜃 𝑦

+ in the log layer. The inset shows the distribution
of the turbulent Prandtl number, the dashed grey line denoting the expected value in the

logarithmic layer, namely Pr𝑡 = 𝑘/𝑘 𝜃 ≈ 0.84. In panel (b) the dash-dotted line denotes the
fit given in equation (3.5). Colour codes are as in table 1.

eddy diffusivity of momentum and temperature. In particular, we find that the expression275

Θ+
𝐶𝐿

− Θ+ = 𝐶𝜃 (1 − 𝑦/𝑅)2 , (3.2)276

with 𝐶𝜃 = 6.62, fits the mean temperature distributions in the pipe core (𝑦 ⩾ 0.2𝑅) quite277
well. Closer to the wall, the defect logarithmic wall law sets in at 𝑦/𝑅 ≲ 0.2,278

Θ+
𝐶𝐿

− Θ+ = − 1
𝑘 𝜃

log(𝑦/𝑅) + 𝐵𝜃 , (3.3)279

where data fitting in the range 𝑦+ ⩾ 50, 𝑦/𝑅 ⩽ 0.2, yields 𝐵𝜃 = 0.732.280
Modeling the turbulent heat fluxes requires closures with respect to the mean temperature281

gradient (see, e.g. Cebeci & Bradshaw 1984), through the introduction of a thermal eddy282
diffusivity, defined as283

𝛼𝑡 =
⟨𝑢𝑟𝜃⟩
dΘ/d𝑦 . (3.4)284

Figure 8 shows that the inferred turbulent thermal diffusivities have a rather simple distri-285
bution. Panel (a) shows near collapse of all cases to a common distribution, minding that286
a log-log scale is used to better bring out the near-wall behaviour. Cases with Pr ≲ 0.125287
fall outside the universal trend, as they show a similarly shaped distribution of 𝛼𝑡 , but288
lower absolute values. In agreement with asymptotic arguments (Kader & Yaglom 1972),289
the limiting near-wall behaviour is 𝛼𝑡 ∼ 𝑦3. Farther from the wall, there is evidence for a290
narrow region with linear growth of 𝛼𝑡 , which is the hallmark of logarithmic behavior of291
the temperature profiles, and which is much clearer at Re𝜏 = 6000, see the black dotted line292
in the figure. In most modeling approaches (Kays et al. 1980; Cebeci & Bradshaw 1984),293
the eddy diffusivity is expressed in terms of the eddy viscosity (𝜈𝑡 = ⟨𝑢𝑟𝑢𝑧⟩ /(d𝑈𝑧/d𝑦)), by294
introducing the turbulent Prandtl number, defined as Pr𝑡 = 𝜈𝑡/𝛼𝑡 . Although this is generally295
assumed to be of the order of unity, a rather complex behaviour is observed in practice, as296
the inset of figure 8(a) shows, and as noted by previous authors (Alcántara-Ávila et al. 2018;297
Alcántara-Ávila & Hoyas 2021; Abe & Antonia 2019).298

The distributions of 𝛼𝑡 in the near-wall and in the logarithmic regions can be modeled299
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Figure 9: Comparison of mean temperature profiles obtained from DNS (solid lines) and
from equation (3.8), with the eddy diffusivity model (3.5) (dashed line). Panel (b) shows a

magnified view to emphasize the behaviour of the low-Pr cases.

using a suitable functional expression, which we borrow from the Johnson-King turbulence300
model (Johnson & King 1985), namely301

𝛼+
𝑡 = 𝑘 𝜃 𝑦

+𝐷 (𝑦+), 𝐷 (𝑦+) =
(
1 − 𝑒−𝑦

+/𝐴𝜃

)2
, (3.5)302

in which the damping function has the asymptotic behaviours303

𝐷 (𝑦+)
𝑦+→0
≈ 𝑦+2/𝐴2

𝜃 , 𝐷 (𝑦+)
𝑦+→∞
≈ 1. (3.6)304

Figure 8(b) shows that equation (3.5)(b), with 𝐴𝜃 = 19.2 yields a nearly perfect fit of the305
DNS data, with slight deviations at 𝑦+ ≲ 10, where in any case the eddy diffusivity is much306
less than the molecular one.307

Starting from the mean thermal balance equation,308

1
Pr

dΘ+

d𝑦+
+ ⟨𝑢𝑟𝜃⟩+ = 1 − 𝑦+/Re𝜏 , (3.7)309

and under the inner-layer assumption (𝑦+/Re𝜏 << 1) one can then infer the distribution of310
the mean temperature in the inner layer from knowledge of the eddy thermal diffusivity, by311
integrating312

dΘ+

d𝑦+
=

Pr
1 + 𝑘 𝜃 Pr 𝑦+𝐷 (𝑦+) . (3.8)313

As figure 9 clearly shows, the quality of the resulting reconstructed temperature profiles314
is generally very good, with the obvious exception of the outermost region of the flow.315
Deviations from the predicted trends are observed at the lowest Prandtl numbers (Pr ≲ 0.125)316
which as previously observed escape from the universal trend of 𝛼𝑡 .317

An important property to define the behaviour of passive scalars in wall-bounded flows318
is the thickness of the conductive sublayer. The latter has been given several definitions (ee,319
e.g. Levich 1962; Schwertfirm & Manhart 2007; Alcántara-Ávila & Hoyas 2021), however320
we believe that the most obvious is the wall distance at which the turbulent heat flux equals321
the conductive one, which based on equation (3.7) occurs when322

𝛼+
𝑡 (𝛿+𝑡 ) =

1
Pr

. (3.9)323
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symbols), compared with with predictions of the eddy diffusivity model (3.9) (solid lines),
and with the low-Prandtl approximation (3.10) (dashed lines), and the high-Prandtl

approximation (3.11) (dash-dotted lines).

Assuming the validity of the closure (3.5), for Pr << 1 the latter condition yields324

𝛿+𝑡 ≈
1

𝑘 𝜃Pr
, (3.10)325

whereas for Pr >> 1 one obtains326

𝛿+𝑡 ≈
(

𝐴2
𝜃

𝑘 𝜃Pr

)1/3

. (3.11)327

Figure (10) compares the above asymptotic estimates, as well the estimate obtained by328
solving equation (3.9) using the full approximation of the eddy diffusivity (3.5), with the329
actual DNS data. Again, very good agreement is recovered at Pr ≳ 0.125, for which 𝛼𝑡 is330
accurately modeled from equation (3.5), whereas deviations appear at lower Re. Whereas331
the high-Prandtl number scaling 𝛿+𝑡 ∼ Pr−1/3 implied by equation (3.11) was questioned332
in several previous studies (Na et al. 1999; Schwertfirm & Manhart 2007), we find that it333
applies to the DNS data quite well. Possible reasons may reside in the fact that previous334
studies were conducted at much lower Reynolds number, at which scale separation between335
inner and outer layer was not substantial. Much less clear is the limit of low Prandtl numbers,336
for which equation (3.10) yields a qualitatively correct increasing trend, however with large337
quantitative deviations. With this caveat, the estimate (3.10) can also be exploited to derive338
minimal conditions for the establishment of a logarithmic layer in the mean temperature339
distribution. In fact, setting the edge of the log layer to 𝑦/𝑅 ≈ 0.2, the conductive sublayer340
is only contained in it as long as 0.2𝑘 𝜃 Pr Re𝜏 ⩾ 1, which implies Pe𝜏 ⩾ 10.9, where341
Pe𝜏 = Pr Re𝜏 is the friction Péclet number. This condition is not satisfied in the present342
dataset from the Pr = 0.00625 flow case, and it is barely satisfied in the Pr = 0.0125 case343
(see table 1).344

From equation (3.8) one can also infer approximate values for the log-law additive constant345
in equation (3.1), defined as346

𝛽(Pr) = lim
𝑦+→∞

(
Θ+(𝑦+) − 1

𝑘 𝜃
log 𝑦+

)
, (3.12)347

which are crucial in the estimation of the heat transfer coefficient (see below). Explicit348
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Figure 11: (a) Determination of log-law offset function, and (b) its distribution as a
function of Pr. In panel (a) the dashed lines denote logarithmic best fits of the DNS data,
of the form Θ+ = 1/𝑘 𝜃 log 𝑦+ + 𝛽. In panel (b) the solid line refers to the estimate obtained
from equation (3.12), with Θ obtained from numerical integration of equation (3.8), the

dashed line to the low-Pr asymptote (3.14), the dash-dotted line to the high-Pr
asymptote (3.16). The case Pr = 0.00625 is marked with an open symbol.

approximations for the log-law shift can be obtained in the limits of very low and very high349
Prandtl numbers. For Pr << 1, equation (3.8) readily yields,350

Θ+ ≈ 1
𝑘 𝜃

log(𝑘 𝜃Pr 𝑦+), (3.13)351

which implies352

𝛽(Pr) = 1
𝑘 𝜃

log Pr + log 𝑘 𝜃

𝑘 𝜃
, (3.14)353

On the other hand, for Pr >> 1, integrating equation (3.8) yields,355

Θ+ ≈
∫ 𝑦+

0

(
Pr

1 + 𝑘 𝜃Pr 𝜂
+ Pr

1 + 𝑘 𝜃𝜂
3/Pr

)
d𝜂

=

√
3

6
𝜋

(
𝐴2
𝜃
Pr2

𝑘 𝜃

)1/3

− 1
𝑘 𝜃

log (𝐴𝜃 𝑘 𝜃Pr) + 1
𝑘 𝜃

log(𝑘 𝜃Pr 𝑦+),
(3.15)356

which implies357

𝛽(Pr) =
√

3𝜋𝐴2/3
𝜃

6𝑘1/3
𝜃

Pr2/3 + 1
𝑘 𝜃

log Pr − 1
𝑘 𝜃

log 𝐴𝜃 . (3.16)358

We note that a similar functional approximation for 𝛽(Pr) were arrived at by Kader & Yaglom359
(1972), although partly based on empiricism and data fitting.360

Changes of the additive logarithmic constant with Pr are examined in figure 11. In panel361
(a) we illustrate the procedure which we have followed in order to obtain estimates of362
the 𝛽(Pr) function, based on fitting the mean temperature distributions with logarithmic363
functions with prefactor 𝑘 𝜃 = 0.459. It is quite interesting that logarithmic distributions364
are recovered for all cases, with exclusion of the Pr = 0.00625 case, consistently with365
the previously obtained lower bounds for the existence of a logarithmic layer of the mean366
temperature. Figure 11(b) then compares the log-law offset constant thus inferred from367
the DNS temperature profiles, with the estimate obtained from equation (3.12), with Θ368
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Figure 12: Distribution of temperature variances (a), and corresponding peak value as a
function of Pr (b). In panel (b), the solid line denotes the predictions of equation (3.18),
the dash-dotted line denotes the high-Pr asymptote (3.19), the dashed line denotes the

low-Pr asymptote (3.20), Refer to table 1 for colour codes.

resulting from numerical integration of equation (3.8), as well as with the low- and high-Pr369
asymptotics. The prediction of 𝛽 obtained from numerical quadrature in fact yields excellent370
prediction of 𝛽(Pr), at Pr ≳ 0.125, consistently with all previously noted approximations.371
The high-Pr asymptote (dash-dotted line), only yields accurate prediction at Pr ≳ 10,372
whereas the low-Pr asymptote tends to overpredict the magnitude of 𝛽 (which is negative for373
Pr < 0.5).374

The distributions of the inner-scaled temperature variances are considered in figure 12(a),375
showing substantial growth with the Prandtl number. Specifically, a prominent peak is376
observed within the buffer layer at high Prandtl, which becomes weaker and moves farther377
from the wall at lower Pr. This behaviour is obviously consistent with the spectra shown in378
figure 5, as the variances are simply the integrals of the spectral maps over all wavelengths.379
The change of the peak temperature variance can be estimated by preliminarily noting that380
asymptotic consistency implies381

< 𝜃2 >+𝑦+→0∼ (𝑏𝜃Pr 𝑦+)2, (3.17)382

where 𝑏𝜃 could in general depend on the Prandtl number (Kawamura et al. 1998), but fitting383
the DNS data suggests that 𝑏𝜃 ≈ 0.245, regardless of Pr. Assuming that quadratic growth of384
the variance continues up to the peak position, we can estimate that385

< 𝜃2 >+
𝑃𝐾≈ (𝑏𝜃Pr 𝛿+𝑡 )2, (3.18)386

where 𝛿+𝑡 is defined in equation (3.9). Hence the following high-Prandtl number asymptotic387
behaviour follows388

< 𝜃2 >+
𝑃𝐾≈

𝑏2
𝜃
𝐴

4/3
𝜃

𝑘
2/3
𝜃

Pr4/3, (3.19)389

whereas equation (3.10) would yield a constant asymptotic behaviour at low Pr, namely390

< 𝜃2 >+
𝑃𝐾≈

𝑏2
𝜃

𝑘2
𝜃

. (3.20)391

Equation (3.19) is in fact found to be quite successful in predicting the growth of the peak392
variance, whereas large deviations from the predicted trends are observed at Pr ≲ 1. This393
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Figure 13: Production of temperature variances (a), also in pre-multiplied for (b), and
corresponding peak value as a function of Pr (c). In panel (b), the dashed line denotes the

high-Pr asymptote (3.22). Refer to table 1 for colour codes.

is partly due to previously noted difficulties in predicting the behaviour of 𝛿𝑡 at low Pr,394
but mainly to loss of validity of first-order Taylor series expansion as the peak position395
moves farther from the wall, and in fact the peak occurs at 𝑦+ ≈ 400 at Pr = 0.00625396
(see figure 10). Furthermore, the dominance of thermal conduction at Pr << 1 implies that397
thermal fluctuations become vanishingly small in the limit.398

The production term of temperature variance, defined as399

𝑃+
𝜃 = ⟨𝑢𝑟𝜃⟩+

dΘ+

d𝑦+
, (3.21)400

is shown in figure 13(a). Similar to the temperature variance, it exhibits a prominent peak401
which decreases in magnitude and moves away from the wall as Pr decreases. It is noteworthy402
that, whereas its magnitude is a strongly increasing function of Pr near the wall, it tends to403
become very much universal in the outer wall layer (say, 𝑦+ ≳ 100), as highlighted in panel404
(b). The peak production can be estimated on the grounds that the mean thermal balance405
equation (3.7) implies that, for Re𝜏 → ∞, 𝑃𝜃 𝑃𝐾 → 0.25 Pr. However, at any finite Reynolds406
number the multiplicative constant is a bit less, and in the present case (Re𝜏 = 1140) we find407

𝑃𝜃 𝑃𝐾 = 0.236 Pr. (3.22)408

Figure 13(c) shows that this prediction is very well satisfied at Pr ≳ 0.0625.409
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3.3. Heat transfer coefficients410

The primary subject of engineering interest in the study of thermal flows is the heat transfer411
coefficient at the wall, which can be expressed in terms of the Stanton number,412

St =
𝛼

〈
d𝑇
d𝑦

〉
𝑤

𝑢𝑏 (𝑇𝑚 − 𝑇𝑤)
=

1
𝑢+
𝑏
𝜃+𝑚

, (3.23)413

where 𝑇𝑚 is the mixed mean temperature (Kays et al. 1980),414

𝑇𝑚 = 2
∫ 𝑅

0
𝑟 ⟨𝑢𝑧⟩ ⟨𝑇⟩ d𝑟

/(
𝑢𝑏𝑅

2
)
, (3.24)415

and 𝜃+𝑚 = (𝑇𝑚 − 𝑇𝑤)/𝑇𝜏 , or more frequently in terms of the Nusselt number,416

Nu = Re𝑏 Pr St. (3.25)417

A predictive formula for the heat transfer coefficient in wall-bounded turbulent flows was418
derived by Kader & Yaglom (1972), based on assumed strictly logarithmic variation of the419
mixed mean temperature with Re𝜏 ,420

1
St

=

2.12 log
(
Re𝑏

√︁
𝜆/4

)
+ 12.5Pr2/3 + 2.12 log Pr − 10.1√︁

𝜆/8
, (3.26)421

where the friction factor 𝜆 = 8/𝑢+
𝑏

2 is obtained from Prandtl friction law, and the log-law422
offset function was determined based on asymptotic consistency considerations, and by fitting423
a large number of experimental data, to obtain 𝛽(Pr) = 12.5Pr2/3 + 1/𝑘 𝜃 log Pr − 5.3, with424
1/𝑘 𝜃 = 2.12. The above formula was reported to be accurate for Pr ≳ 0.7.425

A modification to Kader’s formula was proposed by Pirozzoli et al. (2022), to account426
more realistically for the dependence of 𝜃+𝑚 on Re𝜏 , resulting in427

1
St

=
𝑘

𝑘 𝜃

8
𝜆
+

(
𝛽
𝐶𝐿

− 𝛽2 −
𝑘

𝑘 𝜃
𝐵

) √︂
8
𝜆
+ 𝛽3, (3.27)428

where 𝛽𝐶𝐿 (Pr) = 𝛽(𝑃𝑟) + 3.504 − 1.5/𝑘 𝜃 , 𝛽2 = 4.92, 𝛽3 = 39.6, 𝐵 = 1.23. Either of the429
relations (3.12), (3.14), or (3.16) can then be used to obtain predictions for the heat transfer430
coefficient variation with the Prandtl number.431

The above options are tested in figure 14, which shows the predicted inverse Stanton number432
(a) and Nusselt number (b). With little surprise, we find that equation (3.27) with ’correct’433
definition of 𝛽(Pr) as in equation (3.12) yields very good prediction of the heat transfer434
coefficient, with relative error of less than 1%, for Pr ≳ 0.5. Larger errors are found at lower435
Pr, at which the assumption of logarithmic distribution of the mean temperature becomes436
less and less accurate. Larger errors are also obtained with the asymptotic formulations of437
𝛽(Pr) for high- and low-Prandtl numbers, as well as with Kader’s original formula. The438
figure also shows that the classical power-law correlation of Kays et al. (1980, red line),439
namely440

Nu = 0.022 Re0.8
𝑏 Pr0.5, (3.28)441

reasonably predicts the trend of the heat transfer coefficient in the range of Prandtl numbers442
around unity, whereas it strongly deviates at lower Pr, and at higher Pr, where equation (3.27)443
with (3.16) implies that the correct asymptotic trend is444

Nu ∼ Pr1/3, (3.29)445
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Figure 14: Variation of inverse Stanton number (a) and Nusselt number (b) with Prandtl
number. The solid lines denote the prediction of equation (3.27) with 𝛽 defined as in

equation (3.12), whereas the dash-dotted and dashed lines refer to the same equation, with
𝛽 obtained from the asymptotic high-Pr expression (3.16) and the asymptotic low-Pr

expression (3.14), respectively. The dotted line refers to Kader’s original formula (3.26).
The inset in panel (a) shows percent deviations from the DNS data. In panel (b) the red
line denotes the correlation (3.28), and the blue line the correlation (3.30). The inset of

panel (b) shows the distribution of the Nusselt number obtained from the DNS in
compensated form, namely Nu/Pr1/3.

hence shallower than the power-law formulas in common use. Tendency to this asymptotic446
limit is found to be rather slow as shown in the inset of figure 14b, and probably data at447
higher Prandt numbers would be desirable to corroborate this prediction. Semi-empirical448
correlations for the Nusselt number in the range of Pr << 1 are available based on studies of449
heat transfer in liquid metals and molten salts (Lyon & Poppendiek 1951; Yu-ting et al. 2009;450
Pacio et al. 2015). One of the most frequently used correlations is the one due to Sleicher &451
Rouse (1975), namely452

Nu = 6.3 + 0.0167 Re0.85Pr0.93, (3.30)453

which is shown as a blue line in figure 14b. The agreement with the DNS data is not entirely454
satisfactory, although it seems to improve as Pr decreases. Discrepancies are likely due to455
the large uncertainty which is associated with experiments in liquid metals (Kader & Yaglom456
1972), and/or to potential differences between conditions of imposed heat flux and imposed457
temperature difference. All in all, it seems that the range of low Prandtl numbers in forced458
convection has been only cursorily studied in DNS, while certainly deserving much more459
attention.460

4. Concluding comments461

We have analysed the behaviour of passive scalars in turbulent pipe flow in a wide range of462
Prandtl numbers, so as to be representative of both the low- and the high-Prandtl number463
asymptotic limits. Whereas studies at Pr = 𝑂 (1) are relevant as being representative of air and464
most gases, Prandtl numbers much lower than unity are frequent in nuclear engineering, being465
relevant for liquid metals and molten salts used in the cooling systems of nuclear reactors466
and in solar energy systems, whereas Prandtl numbers higher than unity are representative of467
water, oils, and diffusing substances in mass transfer processes. At the same time, the friction468
Reynolds number here considered (Re𝜏 ≈ 1140), is high enough that a near-logarithmic layer469
is observed in the mean axial velocity, hence we believe that the results are representative470



Prandtl number effects in thermal pipe flow 21

of realistic fully developed forced turbulence. We are not aware of any previous DNS study471
of pipe flow in such wide range of Pr, and/or (relatively) high Reynolds number. DNS at472
Pr >> 1 here have been particularly challenging from a computational standpoint, because473
of the presence of sub-Kolmogorov scales, which should be accurately accounted for, by474
resolving the relevant Batchelor scale.475

Qualitative results regarding the organization of passive scalars at non-unit Prandtl number476
generally confirm the findings of previous studies carried out in plane channels (Alcántara-477
Ávila et al. 2018; Abe & Antonia 2019; Alcántara-Ávila & Hoyas 2021), namely that478
structural similarity with the axial velocity field resulting from similarity of the corresponding479
transport equations, is severely impaired. In fact, strong diffusion at low Pr has the effect480
of filtering out the small scales in the passive scalar field, with special reference to the481
buffer layer. Hence, the corresponding spectral maps (see figure 5) entirely fail to show the482
near-wall energetic site, whereas the outer energetic site survives even at very low Pr. This483
observation carries potential implications as the temperature field of liquid metals could be484
used in experiments to track the dynamics of the outer-layer structures, whose importance in485
the high-Re behaviour of boundary layers has been the subject of intensive research (see, e.g.486
Marusic et al. 2010). On the other hand, passive scalars at high Pr exhibit strong small-scale487
activity confined to the buffer layer, and near-wall organization into streaks, however with488
slightly different size than in the unit Prandtl number case. Interestingly, no clear large-scale489
organization is found in that case, suggesting the high-Pr fluids can be used to study the490
near-wall layer in isolation from the outer layer.491

Regarding the one-point statistics, we find that the mean scalar profiles in the overlap layer492
can be conveniently approximated with logarithmic distributions, with exception of cases with493
very low Prandtl number. Specifically, we provide a criterion for the presence of a logarithmic494
layer to be Pe𝜏 = Pr Re𝜏 ≳ 11, which is supported from the DNS data. An accurate model495
for predicting the mean scalar profiles at any given Pr is then formulated by noting very496
near universality of the distribution of the eddy diffusivity across a wide range of Prandtl497
numbers (Pr ≳ 0.125), which can be faithfully modelled in terms of a simple functional498
relationship. This observation suggests that modeling turbulent diffusion processes directly499
in terms of the eddy diffusivity can have significant advantage over traditional approaches500
based on introduction of the turbulent Prandtl number, which has a much more complex501
spatial distribution.502

The model derived for 𝛼𝑡 bears the further advantage of yielding predictions for a number503
of thermal boundary layer statistics. First, we manage to determine estimates for the thickness504
of the conductive sublayer, which we find to scale as Pr−1/3 at high Pr, and as Pr−1 at low505
Pr, in good agreement with the DNS data. Second, we obtain predictions for the log-law506
additive constant, which we predict to scale as Pr2/3 is the high-Pr limit, in agreement with507
Kader & Yaglom (1972), and as log Pr at moderately low Prandtl number. These scalings are508
well verified in the DNS data. We also obtain predictions for the peak temperature variance509
and its associated peak production, which we find to scale as Pr4/3, and Pr1, respectively, in510
very good agreement with the DNS data. In general, predictions for the high-Pr behaviour511
of the flow statistics are quite robust, whereas lack of universality at low Pr makes modeling512
and theoretical prediction a much more difficult task.513

Last, we have focused on heat transfer. Starting from a modified version of Kader’s classical514
formula (Pirozzoli et al. 2022), we have incorporated Prandtl number effects through the log-515
law offset function. The resulting predictions are in very good agreement with the DNS516
data, with errors of less than 1% at Pr ≳ 0.5, and, consistent with Kader’s inferences,517
we find convincing evidence that the Nusselt number should scale as Nu ∼ Pr1/3 at high518
Pr, although approach to the asymptotic trend is quite slow. Predictions however become519
rapidly poorer at low Prandtl number. Conventional power-law approximations (e.g. Kays520
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et al. 1980), are in satisfactory agreement with the DNS data at Prandtl number not too521
far from unity, but they tend to overestimate Nu significantly at Pr ≳ 10. Other empirical522
formulas, meant to fit experimental data for liquid metals (e.g. Sleicher & Rouse 1975),523
provide reasonable approximation of the DNS data only at extremely low Pr, whereas they524
fall short at moderately low Pr.525

Overall, the present analysis supports and corroborates the theoretical framework set by526
Kader & Yaglom (1972), at least for fluids with relatively high Prandtl number, removing527
most doubts raised in previous DNS studies, which were mainly carried out at limited528
Reynolds number. Furthermore, we are able to set precise operational ranges for the validity529
of classical heat transfer correlations, which are rather narrow indeed. Most difficulties and530
uncertainties are associated with the low Prandtl number regime, which features substantial531
deviations from universality and/or from logarithmic behaviour, thus making the analysis532
more difficult than for the high-Pr regime. Interesting hints for possible treatment of this533
regime were given by Abe & Antonia (2019), for the plane channel flow, which we plan534
to expand in future publications. For that purpose, additional DNS at low Pr and higher535
Reynolds number should be carried out, to quantitatively verify the theoretical prediction536
that at low Pr the heat transfer coefficient should solely be a function of Pe = PrRe𝑏, and537
derive suitable scaling laws for the eddy diffusivity. Equally important would be extending538
the range of Prandtl numbers to higher values. Indeed, as one can infer from figure 14, the539
tendency of the Nusselt number towards the expected Pr1/3 asymptotic behaviour is quite540
slow. Given that Prandtl numbers in the order of hundreds are important in applications,541
e.g. engine oils and contaminants, DNS in that range would be highly desirable. Although542
this would imply prohibitive resolutions using the same grid spacing for the momentum and543
scalar transport equations, the problem could be circumvented by employing a dual mesh, as544
done by Ostilla-Mónico et al. (2015) for natural convection.545
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