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We study turbulent flows in pressure-driven planar channels with imposed unstable ther-
mal stratification, using direct numerical simulations in a wide range of Reynolds and
Rayleigh numbers and reaching flow conditions which are representative of fully devel-
oped turbulence. The combined effect of forced and free convection produces a peculiar
pattern of quasi–streamwise rollers occupying the full channel thickness with aspect–
ratio considerably higher than unity; it has been observed that they have an important
redistributing effect on temperature and momentum, providing for a substantial fraction
of the heat and momentum flux at bulk Richardson numbers larger than 0.01. The mean
values and the variances of the flow variables do not appear to follow Prandtl’s scaling in
the free-convection regime, except for the temperature and vertical velocity fluctuations,
which are more directly affected by wall-attached turbulent plumes. We find that the
Monin–Obukhov theory nevertheless yields a useful representation of the main flow fea-
tures. In particular, the widely used Businger–Dyer flux-profile relationships are found to
provide a convenient way of approximately accounting for the bulk effects of friction and
buoyancy, although the individual profiles may have wide scatter from the alleged trends.
Significant deviations are found in DNS with respect to the commonly used parametriza-
tion of the momentum flux in the light-wind regime, which may have important practical
impact in wall models of atmospheric dynamics. Finally, for modelling purposes, we de-
vise a set of empirical predictive formulas for the heat flux and friction coefficients which
are within about 10% standard deviation from the numerical results in a wide range of
flow parameters.

1. Introduction

Mixed convection is the process whereby heat and momentum are transferred under
the concurrent effect of friction and buoyancy, and it is at the heart of several physi-
cal phenomena of great practical importance, for instance in the engineering design of
heat exchangers and in the dynamics of atmospheric flows. Flow stratification may be
either of stable type (i.e. the higher layers are hotter than the lower), or unstable type
(i.e. lower layers are heated). In the former case, stratification suppresses the vertical
motions thus mitigating friction and heat transfer. In contrast, unstable stratification
promotes turbulent exchanges with obvious opposite effects. Although the two extreme
cases of pure forced convection (classical boundary layers and channel flows) and of free
convection (Rayleigh-Bénard flow) have been extensively studied analytically, experi-
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mentally and numerically, their combination appears to be much less understood. The
current engineering practice (Kays et al. 1980; Bergman et al. 2011) for heat transfer pre-
diction in the presence of mixed convection mainly relies on correlations developed for
either free or forced convection, and applied according to the value of a global Richard-
son number, which grossly weights the effect of bulk buoyancy with respect to friction.
However, combination of the two effects can give rise to flow patterns which are not
observed in any of the two extreme cases. In the context of atmospheric flows it is well
known that in the presence of unstable stratification large streamwise-oriented rollers
may form (Avsec 1937; Hill 1968; Brown 1980; Young et al. 2002; Stull 2012), whose
typical signature are aligned streets of cumulus clouds (Mal 1930; Kuettner 1959, 1971),
and which have been occasionally claimed to be responsible for striped patterns in desert
sand dunes (Hanna 1969), and for the occurrence of long rows of unburned tree crowns in
forest fires (Haines 1982). Wavy perturbations of the ordered pattern of convective rolls
have also been frequently observed (Avsec & Luntz 1937), and interpreted as the result
of secondary instabilities (Clever & Busse 1991, 1992). Laboratory confirmation for the
presence of rollers in unstable mixed convection came from the experiments of Mizushina
et al. (1982); Fukui & Nakajima (1985); Fukui et al. (1991), which also showed that they
play a major role in momentum and heat transfer.

It is no surprise that most numerical studies of mixed convection to date stem from
the atmospheric science community, hence they necessarily rely on turbulence modeling
though large-eddy-simulation (LES) to cope with the involved huge Reynolds numbers,
and incorporate the important effects of rotation, and/or surface roughness (see, e.g.
Deardorff (1972); Khanna & Brasseur (1997); Esau et al. (2013); Park & Baik (2014)).

In order to isolate the effects of the interaction between friction and buoyancy, in
this paper we operate in a simplified setting, whereby: i) the effects of rotation and
surface roughness are simultaneously removed; ii) the internal flow in a planar channel
is considered, with significant simplification with respect to considering the atmospheric
boundary layer; iii) we limit ourselves to the modest Reynolds numbers which can be
currently achieved through direct numerical simulation (DNS). Hence, is all respects
the present exercise may be regarded as a hybrid between canonical pressure-driven
channel flow and Rayleigh-Bénard flow. All these approximations are certainly reasonable
in the context of flows of engineering importance, whereas direct extrapolation of the
results hereafter presented to the domain of atmospheric flows is not granted. Despite
being limited in the range of attainable flow parameters, DNS does rule out some of
the uncertainties incurred in higher-level techniques, especially as far as universality
assumptions for the treatment of the near-wall region go.

Flow in a planar channel is probably the most prototypical wall–bounded shear flow,
and it has been extensively studied through DNS shed light on several important facets
of wall turbulence structure. In particular, recent numerical studies have highlighted de-
viations from the alleged universal behavior of wall turbulence associated with high–Re
effects (Bernardini et al. 2014; Lee & Moser 2015). DNS studies have also addressed
the behaviour of passive scalars transported by the fluid phase, which serve to model
dispersion of dilute contaminants as well as turbulent thermal transport under the as-
sumption of small temperature differences. The latest studies (Pirozzoli et al. 2016) have
achieved friction Reynolds number Reτ ≈ 4000 (here Reτ = uτh/ν, where h is the
channel half–height) hence making it possible to establish the presence of a generalized
logarithmic layer for the mean scalar profiles although with a slightly different set of
constants than those of the streamwise velocity. Classical predictive formulas for heat
transfer based on the log law (Kader 1981) are found to work quite well, with suitable
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choice of the constants, a possible explanation being the expected shape of the heat-flux
co-spectrum (Katul et al. 2013).

At the opposite end of the family of flows under scrutiny is the Rayleigh-Bénard
flow, corresponding to free convection between isothermal walls, which has also been
extensively studied, both experimentally and numerically, mainly in cylindrical confined
configurations (Ahlers et al. 2009). Rayleigh numbers up to 1015 have been reached
experimentally (Niemela et al. 2000; Ahlers et al. 2012) while fully resolved numerical
simulations are behind at Ra = 2 × 1012 (Stevens et al. 2011); around Ra = 1014 the
boundary layers adjacent to the heated plates become turbulent, and a transition to a
state of ultimate convection is expected, marking a change from the classical Nu ∼ Ra1/3

behaviour to a steeper ∼ Ra(1/2)/ ln(Ra3/2) (≃ Ra0.38 at Ra = 1014). Attempts are
ongoing to push the Rayleigh number of the simulations beyond Ra = 2× 1012 since the
experimental evidence in the ultimate regime is not unanimous and reliable numerical
simulations would help solving the controversy. Pure Rayleigh–Bénard flow in planar
geometry has to date received less attention, probably because of the lack of matching
experimental data, and uncertainties related to potential dependence on the wall–parallel
computational box size (Hamman & Moin 2015), the most notable example dating back
to Kerr (1996). Recent numerical simulations of Rayleigh–Bénard flow in planar geometry
in the presence of wall roughness and including the effect of finite thermal conduction at
the walls have been carried out by Orlandi et al. (2015b).

Numerical simulations and experiments of mixed convection in internal flows have been
relatively infrequent so far. Channel flows with stable temperature stratification have re-
ceived some attention in recent years, with important contributions from DNS delivered
by Armenio & Sarkar (2002); Garcia-Villalba & del Álamo (2011), leading to the con-
clusion that flow relaminarization in the channel core may be achieved depending on the
value of the bulk Richardson number. However, as pointed out by Garcia-Villalba & del
Álamo (2011), this effect sensitively depends on the size of the computational box, and
extremely large domains are required to achieve box–independent results, even for the
lowest order statistics. Flows with unstable stratification were first studied through DNS
by Domaradzki & Metcalfe (1988), who observed the formation of longitudinal rollers in
stratified Couette flow between sliding plates. Iida & Kasagi (1997) carried out numerical
simulations of plane channel flows with unstable stratification at low bulk Richardson
numbers (Rib 6 0.3) and low Reynolds number (Reτ = 150), finding steady increase of
the heat transfer coefficient with Rib, whereas (quite interestingly) the friction coefficient
was found to slightly decrease up to Rib ≈ 0.05. Sid et al. (2015) extended the envelope
of the flow parameters to Reτ . 400, Rib . 1, confirming the non–monotonic trend of
friction, and observing a typical blunting of the velocity and temperature profiles as the
effect of buoyancy becomes significant. Using a DNS database at Reτ . 200, Ra . 107,
Scagliarini et al. (2015) developed a phenomenological model resulting in a modified loga-
rithmic law for the mean velocity which incorporates the effects of friction and buoyancy.
Garai et al. (2014) carried out a DNS study whereby the effect of increasing instability
and heat conduction within the solid wall are considered, finding that convective instabil-
ity does affect the coherent structures. Specifically, they found that in the mixed regime
the plumes (downdrafts) tend to align one after another along the streamwise direction,
and induce streamwise roll vortices in the bulk region of the channel flow. Notably, all
the above numerical studies were carried out at rather low Reynolds and/or Rayleigh
number, hence they are not necessarily representative of fully turbulent flow conditions
of practical relevance, and they span a limited range of Richardson numbers, typically
close to the case of pure forced convection. Further, with the exception of the work of



4 S. Pirozzoli, M. Bernardini, R. Verzicco, P. Orlandi

Zonta & Soldati (2014), simulations have been mainly carried out in narrow channels,
which may prevent natural self–organization of large–scale coherent structures.

The theoretical understanding of mixed convective flows mainly relies on the frame-
work laid by Obukhov (1946); Monin & Obukhov (1954). Being based on dimensional
arguments, the Monin-Obukhov (hereafter MO) similarity theory rests on the existence
of a single length scale which incorporates the effects of friction and buoyancy defined as

L =
u3
τ

βgQ
, (1.1)

where uτ = (τw/ρ)
1/2 is the friction velocity (with τw and ρ the time– and surface–

averages wall viscous stress and the fluid density, respectively), Q is the total vertical
heat flux, β is the thermal expansion coefficient of the fluid, and g is the gravity accelera-
tion. It should be noted that the definition of L given in equation (1.1) is consistent with
that given by Kader & Yaglom (1990), and it differs from the most commonly used defi-
nition which also includes a minus sign in front of the expression, and which incorporates
the Karman constant at the denominator. Given the definition of the Monin-Obukhov
length scale, and based on the turbulence kinetic energy equation, it is expected that for
wall distances below L mechanical production of turbulence dominates, whereas buoyant
production should prevail further away (Wyngaard et al. 1971). MO similarity is fre-
quently used in the meteorological context to estimate stress and heat flux from mean
velocity and temperature gradients (Stull 2012), and in LES as a wall function for enforce-
ment of numerical boundary conditions at off-wall locations (Deardorff 1972). The MO
similarity theory has received general confirmation from atmospheric field measurements
although with a large degree of scatter owing to inherent measurement uncertainties,
and even certain basic features as the asymptotic mean velocity and temperature scal-
ings under light–wind conditions are the subject of current controversy (Rao 2004; Rao &
Narasimha 2006). Numerical simulations based on LES models do support MO similar-
ity in general terms (Khanna & Brasseur 1997, 1998; Johansson et al. 2001; Zilitinkevich
et al. 2006), although serious issues arise regarding the proper scaling of horizontal ve-
locity fluctuations. It is worthwhile noting that those LES studies were carried out at
realistic atmospheric conditions, hence possibly affected by approximate sub–grid–scale
parametrization as well as by uncertainties incurred with the use of MO theory to model
the near–ground flow. DNS has also been occasionally used to scrutinize predictions of
the MO similarity, however mainly for the case of stable stratification (Chung & Matheou
2012; Shah & Bou-Zeid 2014).

It is the main purpose of this study to establish a high–fidelity database for unstably
buoyant channel flows which encompasses a wide range of Richardson numbers, at high
enough values of Reynolds and Rayleigh number to be representative of fully developed
turbulence. The accompanying expectation is that the data herein collected may be used
for the development of improved near-wall models for LES. The numerical database is
presented in §2, the flow organization is discussed in §3, and the main flow statistics in §4.
The results are discussed in the light of MO similarity theory in §5, and considerations
on predictive formulas for heat transfer and skin friction are given in §6.
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Flow case Reb Ra Rib h/L yP /h Reτ Nu Cf Nx Ny Nz

Ra9 Re0 0 109 ∞ ∞ 0.120E-01 0 63.172 NA 6144 768 3072
Ra9 Re4.5 31623 109 1 4.44264 946.41 60.255 7.16E-3 6144 768 3072
Ra8 Re0 0 108 ∞ ∞ 0.257E-01 0 30.644 NA 2560 512 1280
Ra8 Re3 1000 108 100 214.136 0.257E-01 96.166 30.470 7.39E-2 2560 512 1280
Ra8 Re3.5 3162 108 10 30.0932 0.275E-01 179.12 27.672 2.56E-2 2560 512 1280
Ra8 Re4 10000 108 1 3.67709 0.285E-01 351.01 25.443 9.85E-3 2560 512 1280
Ra8 Re4.5 31623 108 0.1 0.44134 0.123E-01 864.24 45.584 5.97E-3 2560 512 1280
Ra7 Re0 0 107 ∞ ∞ 0.498E-01 0 15.799 NA 1024 256 512
Ra7 Re2.5 316.2 107 100 167.716 0.503E-01 38.690 15.541 1.20E-1 1024 256 512
Ra7 Re3 1000 107 10 24.4576 0.563E-01 70.992 14.000 4.03E-2 1024 256 512
Ra7 Re3.5 3162 107 1 3.01888 0.659E-01 134.98 11.880 1.46E-2 1024 256 512
Ra7 Re3.5 LA 3162 107 1 2.99729 0.659E-01 136.12 12.094 1.48E-2 2048 256 1024
Ra7 Re3.5 SM 3162 107 1 2.85494 0.659E-01 136.60 11.642 1.49E-2 512 256 256
Ra7 Re3.5 NA 3162 107 1 2.50569 0.659E-01 142.59 11.622 1.62E-2 256 256 128
Ra7 Re4 10000 107 0.1 0.37257 0.370E-01 307.01 17.250 7.54E-3 1024 256 512
Ra7 Re4.5 31623 107 0.01 0.04243 0.129E-01 823.19 37.871 5.42E-3 2560 512 1280
Ra6 Re0 0 106 ∞ ∞ 0.105E+00 0 8.2884 NA 512 192 256
Ra6 Re2 100 106 100 114.745 0.101E+00 16.436 8.1528 2.16E-1 512 192 256
Ra6 Re2.5 316.2 106 10 16.0776 0.114E+00 30.527 7.3180 7.45E-2 512 192 256
Ra6 Re3 1000 106 1 1.94472 0.127E+00 58.894 6.3560 2.77E-2 512 192 256
Ra6 Re3.5 3162 106 0.1 0.29783 0.120E+00 112.47 6.7801 1.02E-2 512 192 256
Ra6 Re4 10000 106 0.01 0.02906 0.370E-01 298.92 12.419 7.15E-3 1024 256 512
Ra6 Re4.5 31623 106 0.001 0.00349 0.129E-01 817.63 30.508 5.35E-3 2560 512 1280
Ra5 Re3.5 3162 105 0.01 0.02262 0.127E+00 108.48 4.6190 9.41E-3 512 192 256
Ra5 Re4 10000 105 0.001 0.00284 0.373E-01 297.86 12.013 7.10E-3 1024 256 512
Ra4 Re3 1000 104 0.01 0.01508 0.382E+00 45.731 2.3073 1.67E-2 512 192 256
Ra4 Re3.5 3162 104 0.001 0.00225 0.257E-01 107.22 4.4345 9.19E-3 512 192 256
Ra0 Re3.5 3162 0 0 0 0.127E+00 106.78 4.4836 9.12E-3 512 192 256
Ra0 Re4 10000 0 0 0 0.370E-01 297.78 12.009 7.09E-3 1024 256 512
Ra0 Re4.5 31623 0 0 0 0.129E-01 815.60 29.757 5.32E-3 2560 512 1280

Table 1: List of parameters for buoyant turbulent channel DNS. Reb = 2hub/ν is the
bulk Reynolds number, Reτ = huτ/ν is the friction Reynolds number, Rib = 2βg∆θh/u2

b

is the bulk Richardson number, Ra = βg∆θ(2h)3/(αν) is the Rayleigh number, Nu =
2hQ/(α∆θ) is the Nusselt number, Cf = 2τw/(ρu

2
b) is the skin friction coefficient.Nx,Ny,

Nz are the number of grid points in the streamwise, wall-normal, and spanwise directions.
An error stretching function y(η) = erf [a (η − 0.5)] / erf (0.5 a), a = 3.2, η = [−1, 1] has
been used to cluster grid points in the wall-normal direction. All simulations are carried
out in a Lx×Lz = 16h×8h box, except for those labeled as LA (32h×16h), SM (8h×4h),
NA (4h× 2h).

2. The numerical database

The Navier-Stokes equations for an incompressible buoyant fluid under the Boussinesq
approximation are numerically solved

∂uj

∂xj
= 0,

∂ui

∂t
+

∂uiuj

∂xj
= −

∂p

∂xi
+ βgθδi2 +Πδi1 + ν

∂2ui

∂xj∂xj
, (2.1)

∂θ

∂t
+

∂θuj

∂xj
= α

∂2θ

∂xj∂xj
, (2.2)
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Reb Line type Ra Symbol type

0 · · · · · · · 0 �
102.5 105 ∆
103 · · · · · 106 ∇

103.5 ·· ·· ·· 107 ⊲

104 108 ⋄
104.5 109 ◦

Table 2: Nomenclature of lines (indicating the value of Ra) and symbols (indicating the
value of Reb.
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Figure 1: Overview of computed flow cases in the Ra-Reb plane. Each solid square cor-
responds to a DNS. The dashed diagonal lines have constant Rib. The shaded area high-
lights the subset of DNS which have been mainly used for the statistical analysis. Note
that the bi-logarithmic diagram is intentionally inconsistent for the purpose of including
the extreme cases of free convection (Reb = 0) and forced convection (Ra = 0).

where ui are the Cartesian velocity components (i = 1, 2, 3 corresponding, respectively to
the streamwise, wall–normal, and spanwise directions), θ is the temperature perturbation
with respect to a reference state of hydrostatic equilibrium, β is the thermal expansion
coefficient, g is the gravity acceleration, Π = u2

τ/h is the forcing acceleration used to
maintain a constant mass flow rate, and ν and α are the kinematic viscosity and temper-
ature diffusivity, respectively. The Navier-Stokes-Boussinesq system is typically deemed
to be a very good approximation for atmospheric flows. Deviations from the assumed
model (referred to as Non–Oberbeck–Boussinesq effects), and mainly caused by depen-
dence of the dynamic viscosity and thermal expansion coefficients on temperature, were
studied by Zonta & Soldati (2014). For the purpose the above system of equations, an
existing channel flow solver with passive scalar transport (Pirozzoli et al. 2016) has been
modified; the code is capable to discretely preserve the total kinetic energy and the scalar
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variance in the limit of vanishing diffusivities and time integration error. The tempera-
ture is assigned at the bottom and top no-slip walls, and periodic boundary conditions
are enforced in the streamwise and spanwise directions to exploit statistical homogeneity.
The flow under study is controlled by three global parameters, namely the bulk Reynolds

number Reb = 2hub/ν, where ub is the channel bulk velocity, the Rayleigh number,
Ra = (8h3βg∆θ)/(αν), where ∆θ is the temperature difference across the two walls, and
the Prandtl number, Pr = ν/α. The relative importance of gravity as compared to con-
vection is quantified by the bulk Richardson number, Rib = 2hβg∆θ/u2

b = Ra/(Re2bPr).
All the simulations have been carried out at unit Prandtl number, covering the range
of Reynolds and Rayleigh numbers 0 6 Reb 6 104.5 = 31623, 0 6 Ra 6 109. The
various DNS are labeled according to the following convention: Rax Rey denotes a run
carried out at Ra = 10x, Reb = 10y, Ra = 0 corresponding to pure Poiseuille flow, and
Reb = 0 corresponding to pure Rayleigh-Bénard flow. Accordingly, the Richardson num-
ber may attain the extreme values 0 and ∞, and finite values in the range 10−3 − 102,
in multiples of 10. An overview of the computed flow cases is presented in figure 1 in
the Ra-Reb plane. The extreme cases of Rayleigh-Bénard and Poiseuille flow are shown
on the horizontal and vertical axes, respectively. It is important to note that in the cho-
sen doubly-logarithmic representation the iso-lines of the bulk Richardson number are
diagonal lines, and the flow conditions are selected in such a way that several flow cases
are encountered along the iso-Rib lines to help isolate the effects of the parameters into
play. Table 1 provides a list of the bulk flow parameters obtained for all the simulations
herein carried out. The grid spacings have been carefully selected in such a way that
the resolution requirements put forth by Shishkina et al. (2010) are satisfied in the limit
case of pure buoyant flow, and the spacings in wall units are ∆x+ = ∆z+ . 4.5 in pure
Poiseuille flow (Bernardini et al. 2014). The adequacy of the mesh resolution has been
checked a-posteriori for all the simulations, and the grid size in each coordinate direction
is nowhere larger that three local Kolmogorov units.

Preliminary simulations have been carried out for flow case Ra7 Re3.5 (having Rib = 1)
to establish the effect of computational box size on the turbulence statistics. The bulk
flow parameters for these DNS, listed in table 1 suggest little effect of the box size,
except for the smallest domain (having Lx = 4h, Lz = 2h), which shows symptoms
of severe numerical confinement. Differences are clearer in the statistics of velocity and
temperature, as shown in figure 2. The figure suggests that the computational domain
has effects even on the mean flow properties, and especially the velocity variable that
tends to have a flatter spatial distribution in narrow domains. Near insensitivity of mean
velocity and temperature is observed starting at Lx × Lz = 16h× 8h, although velocity
and temperature variances are still varying, even in non-monotonic fashion. Hence, given
the need to keep the computational expense within reasonable bounds, and given the
restrictions on the computational box size in Poiseuille flow (Bernardini et al. 2014),
all simulations have been performed in a 16h × 8h box. In this respect we note that
linear stability analysis (Gage & Reid 1968) predicts the onset on exponentially growing
disturbances in the form of longitudinal rolls in the presence of unstable stratification,
even at very low Rayleigh number. The most unstable disturbances predicted by linear
stability analysis have a typical spanwise wavelength of about 4h, which is comparable
with the typical wavelength of the rollers recovered in fully turbulent simulations (see
below). Hence, Lz = 4h may be regarded as a minimal spanwise box size to achieve
developed turbulence in channel flow simulations of mixed convection phenomena.
For ease of later reference, the style of lines and symbols used to denote the various

flow cases is explained in table 2. To avoid possible confusion it is important to note that,
consistent with (most of) the wall turbulence community, the streamwise, wall-normal
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Figure 2: Box size sensitivity study for flow case Ra7 Re3.5 (Rib = 1): (a) mean velocity;
(b) mean temperature; (c) variance of wall-normal velocity; (d) variance of temperature.
vf = (2βgh∆θ)1/2 is the reference free-fall velocity. Statistics are obtained in boxes with
Lx×Lz = 4h×2h (dotted lines); 8h×4h (dashed lines); 16h×8h (solid lines); 32h×16h
(dot-dashed lines).

and spanwise coordinates are here labeled as x, y, z, respectively, and the corresponding
velocity components as u, v, w. In contrast, in the geophysical community z and w are
typically reserved for the vertical, wall normal, direction.

3. Flow organization

The flow structure is scrutinized in this section by analyzing instantaneous snapshots
of the flow variables and their corresponding spectral densities. To get insight into the
combined effects of Reynolds and Rayleigh numbers, we show instantaneous velocity and
temperature fluctuations (figures 3–5) in wall–parallel and cross–stream planes for sev-
eral cases along the outer edge of the parameter–space matrix, marked with a shaded
area in figure 1, for decreasing Rib. Specifically, DNS results are presented at constant
Ra = 108 for increasing Reb, up to Rib = 1, and then at constant Reb = 104.5 for de-
creasing Ra, down to the limit case of Poiseuille flow. Two representative wall distances
have been selected for the analysis; the channel centerline (y = h), where v′ and θ′ probe
the large–scale flow organization, and the position of peak production of temperature
fluctuations (Pθ = −v′θ′dθ/dy), hereafter indicated as y = yP (see table 1 for the nu-
merical values), where we show u′ and θ′. For the purpose of clearly bringing to light
large-scale organized motions, in the right column of figure 5 we also show the instanta-
neous temperature fields averaged in the streamwise direction (the streamwise averaging
operator is hereafter denoted with the angular brackets < · >), with associated stream-
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(i) (j)

(k) (l)

Figure 3: Effect of Reynolds and Rayleigh number variation: instantaneous visualizations
of v′ (left column) and θ′ (right column) at channel center plane (y = h) for flow cases
Ra8 Re0 (Rib = ∞, first row), Ra8 Re3 (Rib = 100, second row), Ra8 Re4 (Rib = 1,
third row), Ra7 Re4.5 (Rib = 0.01, fourth row), Ra6 Re4.5 (Rib = 0.001, fifth row),
Ra0 Re4.5 (Rib = 0, sixth row). 24 contour levels are shown for each variable in the
range ±3 standard deviations from the mean value (negative values in blue and positive
in red).



10 S. Pirozzoli, M. Bernardini, R. Verzicco, P. Orlandi

(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

(k) (l)

Figure 4: Effect of Reynolds and Rayleigh number variation: instantaneous visualizations
of u′ (left column) and θ′ (right column) at near-wall station (y = yP ) for flow cases
Ra8 Re0 (Rib = ∞, first row), Ra8 Re3 (Rib = 100, second row), Ra8 Re4 (Rib = 1,
third row), Ra7 Re4.5 (Rib = 0.01, fourth row), Ra6 Re4.5 (Rib = 0.001, fifth row),
Ra0 Re4.5 (Rib = 0, sixth row). 24 contour levels are shown for each variable in the
range ±3 standard deviations from the mean value (negative values in blue and positive
in red).
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Figure 5: Effect of Reynolds and Rayleigh number variation: visualizations of θ′ (left col-
umn) and < θ′ > (right column) in cross-stream plane for flow cases Ra8 Re0 (Rib = ∞,
first row), Ra8 Re3 (Rib = 100, second row), Ra8 Re4 (Rib = 1, third row), Ra7 Re4.5
(Rib = 0.01, fourth row), Ra6 Re4.5 (Rib = 0.001, fifth row), Ra0 Re4.5 (Rib = 0, sixth
row). 24 contour levels are shown for each variable in the range ±3 standard devia-
tions from the mean value (negative values in blue and positive in red). The panels in
the right column also report the streamtraces constructed with the streamwise-averaged
cross-stream flow, (< v >,< w >).

traces of the cross-stream flow. In the free-convection limit (panels (a)–(b)) persistent
large–scale flow organization is observed at the channel centerline, consisting of a net-
work of rollers which transport hot fluid from the bottom to the top (and vice versa)
through upward– and downward–traveling plumes, as is evident from figure 5(a),(b). The
flow visualizations suggest that the rollers have axes preferably pointing in the x and in
the z direction, which is a likely consequence of the rectangular geometry of the compu-
tational domain. Indeed, the footprint of rollers with axes aligned in the z direction is
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apparent in the near–wall distribution of u (see figure 4a). As soon as the mean flow–rate
becomes non–zero (panels (c)–(d), corresponding to Rib = 100), the flow attains a more
definite spatial orientation, the rollers now mostly pointing in the streamwise direction.
It is noteworthy that only one pair of counter–rotating rollers are captured within the
selected computational box. At intermediate Richardson numbers a strong meandering
behavior of the rollers is observed, which is most evident at Rib = 1 (panels (e)–(f)), and
which is the likely result of wavy instability of the counter–rotating rollers. This kind of
instability is frequently observed in the meteorological context (Avsec 1937; Bénard &
Avsec 1938), and in experiments (Pabiou et al. 2005), and it was theoretically explained
in the context of laminar flow by Clever & Busse (1991). The association between vertical
velocity and temperature fluctuations at the channel centreline, which well reflects the
importance of vertical motions in the redistribution of the temperature field. Waviness
of the rollers seems to be suppressed at further low Richardson number (Rib = 0.01,
see panels g,h), at which the rollers are very nearly straight, and strong organization is
observed in cross-stream planes. Loss of coherence of the rollers and loss of correlation
between v′ and θ′ is observed starting from Ri = 0.001 (panels (i)–(j)), which marks
the passage to a spotty organization in the channel core typical of Poiseuille flow. In
cross–stream planes (see figure 5), the change of regime from Rib = 0.01 to Rib = 0.001
is marked by the disappearance of rollers spanning the whole channel, although large
eddies are still observed in the form of wall–attached ejections, mainly confined to each
channel half (Bernardini et al. 2014).

As a result of the change in the bulk flow organization, the near–wall turbulence
is also modified. In the case of free convection (figure 4(a)–(b)) the typical temperature
pattern observed in Rayleigh–Bénard flow is recovered, with a distinctive network of near–
wall line plumes protruding from the boundary layer into the bulk flow (Kerr 1996). A
similar organization is found up to Rib = 1 (panels (e)–(f)), although a clear modulating
influence from the overlaying rollers is found as the most intense near–wall plumes tend
to be embedded within large–scale updrafts which are the ascending branch of core
rollers (compare with figure 3(e)–(f)). In this regime the streamwise velocity does not
have a definite small–scale organization, nor it is clearly associated with the temperature
field. The scenario changes at Rib = 0.01 (figure 4(g)–(h)), with momentum streaks
first appearing near the wall, which have strongly negative correlation with temperature
fluctuations. At this Rib, the streaks appear to be strongly modulated by the action
of the core rollers. However, as this action ceases (Rib 6 0.001), near–wall turbulence
attains the typical organization of canonical wall–bounded flows.

It is important to note that, to a first approximation, the type of flow pattern is
controlled by the bulk Richardson number. As an illustrative example, in figure 6 we show
flow visualizations for three flow cases with Rib = 1, in decreasing order of Reb (and Ra).
A similar type of large–scale organization is recovered in all three cases, perhaps with
stronger meandering of the rollers at the higher Reb, at which finer scale organization of
turbulence is obviously also observed.

More quantitative information regarding the flow structure can be obtained by inspect-
ing the spectral densities of the flow variables, providing information on the repartition of
energy across the various scales of turbulence. The spanwise spectra are here considered
as they are not affected by bulk flow convection in the presence of shear (Bernardini
et al. 2014). In figure 7(a) we show the spectra of wall–normal velocity fluctuations at
the channel centerline in the classical Kolmogorov representation for all the flow cases
shown in the previous flow visualizations, hence spanning the entire range of Richardson
numbers. The figure shows near perfect universality of the distributions, and confirms
adequate resolution of the small flow scales for all flow cases here reported. Excellent
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 6: Numerical simulations at Rib = 1: instantaneous visualizations of u′ (left col-
umn), v′ (middle column), θ′ (right column) at channel centerline for flow case Ra9 Re4.5
(first row), Ra8 Re4 (second row), Ra7 Re3.5 (third row). 24 contour levels are shown for
each variable in the range ±3 standard deviations from the mean value (negative values
in blue and positive in red).

comparison is also obtained with transverse velocity spectra obtained from DNS data
for isotropic turbulence (Jiménez et al. 1993), hence supporting universality of the small
scales far from walls. To better highlight the different spatial organization at the large
scales of motion, spectral densities of velocity components and temperature are shown
in linear scale and as a function of the spanwise wavelength in panels (b)–(d). To rule
out effects of large turbulence intensity variation with Reb and Ra, the spectral densities
are reported in normalized form (denoted with the hat symbol), in such a way that they
all integrate to unity. The figure confirms the dominance of energetic motions spanning
the full channel width. In fact, the most energetic Fourier mode for v and θ is found
for all cases (with the exception of pure Poiseuille flow) at λz = Lz, which is consistent
with the previously noticed occurrence of two rollers in all flow visualizations. It should
be noted that the apparently non-monotonic Richardson number trend of the strength
of the Lz mode is due to the chosen normalization of the spectra. In fact, the unscaled
spectra (not shown) have a monotonic increasing trend as Rib decreases. The behavior
of the streamwise velocity spectra is quite different, and in that case the second Fourier
mode (λz = Lz/2) is dominant, attaining a peak at Rib = 0.1. It is noteworthy that
the doubled typical wavelength of u with respect to v is also different than observed
in similar flows as plane Couette flow (Pirozzoli et al. 2014). The difference is due to
the even symmetry properties of the mean velocity field with respect to the centerline,
which implies that both upward and downward vertical motions locally convey positive
streamwise velocity fluctuations. Hence, to each peak of v′ at the channel centerline, two
peaks of u′ must be present.

The spectral densities at the near–wall station (y = yP ) are shown in figure 8. In
this case, a semi–logarithmic representation is used for the pre–multiplied spectra, in
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Ê
z
(v
)

λz/h

∞

Figure 7: Spanwise spectral densities at channel centerline. In panel (a) the spectra of
v′ are shown in Kolmogorov representation (the thick grey line denotes the transverse
velocity spectrum in isotropic turbulence at Reλ = 142 (Jiménez et al. 1993)). In panels
(b), (c), (d) we show the normalized spectra of u′, v′, θ′ as a function of the wavelength.
Refer to table 2 for nomenclature of lines and symbols.

such a way that equal areas correspond to equal energies. In flow cases near the free–
convection limit the spectra of v and θ are bump–shaped, with a maximum at λz ≈ 0.3h,
which is connected with the typical spacing between adjacent near–wall plumes. On
the other hand, the u and w spectra feature energy concentration at the largest scales,
which is the footprint of the rollers sweeping the walls by horizontal ‘winds’ because of
the impermeability condition. A change of behavior is noticed around Rib = 1, which
marks a substantial reduction of the typical length scale of the v-bearing eddies towards
λz ≈ 0.07h, which corresponds to about 50 wall units (see table 1). This is the typical scale
found in the near-wall streaks in Poiseuille flow (Kim et al. 1987), hence this change of
flow scales is the symptom of passage from the regime of free to forced convection. A bump
also forms in the spectra of u, w and θ at Rib . 1, corresponding to about 100 wall units,
again consistent with the behavior in Poiseuille flow. Notably, at intermediate Richardson
numbers, the spectra of w′ seem to contain more energy at the largest resolved modes
than the spectra of u′, which can be explained by recalling the dominant streamwise
alignment of the rollers in the intermediate Rib regime.

4. Flow statistics

The main flow statistics are presented in this section, starting from the limiting cases of
pure free and forced convection. The results obtained for Rayleigh–Bénard convection are
shown at several Rayleigh numbers in figure 9, with temperatures scaled by the total dif-
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Figure 8: Pre-multiplied, normalized spanwise spectral densities of longitudinal velocity
(a), vertical velocity (b), spanwise velocity (c) and temperature (c) at y = yP .

ference ∆θ, and velocities scaled with the reference free-fall velocity vf = (2βgh∆θ)1/2.
For the sake of comparison of statistics at different Rayleigh numbers, wall distances
(with the exception of panel (d)) are multiplied by the respective Nusselt number, since
h/Nu is proportional to the thermal boundary layer thickness (Ahlers et al. 2009). In
fact, the mean temperature profiles in panel (a) show near collapse in this represen-
tation, with an extended nearly linear profile, consistent with the established motion
that at the (relatively low) Rayleigh numbers under scrutiny the boundary layer is in a
(quasi–)laminar state (Ahlers et al. 2009). The off-wall position y = h/Nu also very well
matches the location where temperature fluctuations attain a maximum (panel (b)), and
the peak location of θ′ production (namely yP ). It is noteworthy that the amplitude of
this maximum depends on the Rayleigh number to some extent, with possible saturation
at sufficiently high Ra. This effect is likely caused by the decreased amplitude of vertical
motions when measured in vf units (panel (d)), which also show evidence for satura-
tion at high Ra. Apparently, saturation of θ′ in confined geometries is not observed at
Rayleigh numbers as high as 1011 (Stevens et al. 2011). Similar observations were made
by Orlandi et al. (2015a), who noticed that in canonical shear flows turbulent fluctua-
tions (as compared to the bulk channel velocity) are in fact higher at lower Reynolds
number. No systematic trend with Ra is observed for the horizontal velocity fluctuations
(panel (c)), which are likely dominated by large–scale sweeping motions.

The structure of the velocity and temperature fields in natural convection has been
the subject of extensive investigations, especially within the atmospheric science commu-
nity (Wyngaard 1992). It is a common notion that a free–convection layer should exist in
the atmosphere in which wind and temperature exhibit inverse power–law scalings with
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Figure 9: Profiles of mean temperature (a), temperature variance (b), horizontal velocity
variance (c), and vertical velocity variance (d) in pure Rayleigh-Bénard flow (Rib = ∞).
vf = (2βgh∆θ)1/2 is the reference free-fall velocity, and the subscript CL is used to
indicate the channel centerline state.

the wall distance

θ(y)− θ0
θτ

= 3Bθ

(

(y/L)−1/3 − (y0/L)
−1/3

)

,

u(y)− u0

uτ
= −3Bu

(

(y/L)−1/3 − (y0/L)
−1/3

)

,
(4.1)

where θτ = Q/uτ is the friction temperature, L is the MO length scale defined in equa-
tion (1.1), the subscript 0 denotes a suitable off–wall reference location, and Bθ and
Bu are two supposedly universal constants (for instance, Kader & Yaglom (1990) re-
port Bθ ≈ 1.3, Bu ≈ 1.9). Equation (4.1) was first derived by Prandtl (1932) from
mixing length arguments, based on the assumption that the typical vertical velocity
scale of wall-attached buoyant plumes is vP = (βgQy)1/3, the associated temperature
scale is θP = Q2/3(βgy)−1/3, and the turbulent Prandtl number is constant. Hence, the
accompanying expectation is that the velocity variances should grow as y2/3, whereas
the temperature variances should decay as y−2/3. Atmospheric measurements (Kader &
Yaglom 1990) generally indicate that the scaling laws (4.1) for the mean temperature
field are grossly satisfied in the free–convection regime. However, field experiments in
that regime are inevitably affected by the presence of (albeit small) mean winds, which
implies large uncertainties and lack of reproducibility. On the other hand, laboratory ex-
periments of pure convection have mostly focused on strongly confined conditions (Ahlers
et al. 2009), hence do not convey much useful information for the purpose. To directly
verify the occurrence of the inverse power–law behaviour given by (4.1) in DNS we con-
sider the distributions of the power–law indicator functions, defined as Ξϕ = (y/ϕ) dϕ/dy
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Figure 10: Power-law diagnostic functions for mean temperature (a) temperature variance
(b), vertical velocity variance (c), and horizontal velocity variance (d), in Rayleigh-Bénard
flow (Rib = ∞).

for several flow variables ϕ. The presence of a plateau in Ξϕ would obviously indicate
a ϕ ∼ yΞϕ power–law range. The power–law indicators for mean temperature and for
velocity and temperature variances are shown in figure 10 for free convection flow cases.
The mean temperature (panel (a)) does not show any evidence of a sensible layer with
power–law behaviour. It may be argued that a dip is forming in a narrow range of wall
distances at the highest Rayleigh number here considered (Ra = 109), although the re-
sulting power–law exponent is far from the alleged −1/3. This large discrepancy with
respect to the Prandtl’s theory seriously puts into question the validity of the predicted
scaling, or perhaps suggests that extreme Rayleigh numbers are required to observe the
y−1/3 law.

The validity of the classical free-convection scaling is also far from clear as regards the
fluctuating flow properties. On the one hand (figure 10(b)), it is found that an extended
power–law region forms for the temperature variances with exponent not far from the
expected −2/3 value, and which widens with Ra. On the other hand, while the vari-
ance of vertical fluctuations (panel (c)) may seem to form a small plateau with positive
power–law exponent (optimistically, not far from the expected 2/3), the streamwise ve-
locity fluctuations (panel (d)) are consistently decreasing towards the channel centerline,
thus clearly contradicting the expected increasing trend. This odd behavior of velocity
fluctuations in free convection has been long recognized, and deviations from Prandtl’s
scaling have been frequently attributed to the important effect of h–scaled eddies on the
horizontal velocity components (Panofsky et al. 1977). A possible explanation for the ob-
served ‘odd’ scaling of the horizontal velocity fluctuations was given by Kader & Yaglom
(1990), based on the assumption that the relevant velocity scale for horizontal velocity
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Figure 11: Profiles of mean streamwise velocity (a) and mean temperature (b) for pure
Poiseuille flow (Ri = 0). The solid lines correspond to logarithmic laws for velocity and
temperature.

fluctuations is u2
τ/vP . Our impression is that figure 10(c) at least partially confirms their

prediction, although no extended power–law range is observed here.
In the sake of completeness the mean velocity and temperature profiles for the case

of pure Poiseuille flow are also shown in figure 11. It is found that the mean velocity
profiles (panel (a)) are accurately fitted using the conventional logarithmic approxima-
tion, namely u/uτ = C + log(yuτ/ν)/k, with the traditional choice C = 5, k = 0.4. The
same approximation works well also for the temperature field (panel (b)), hence at unit
Prandtl number and in the absence of coupling through buoyancy, very close similarity if
found between the velocity and the temperature fields, except in the channel core, where
temperature must have non–zero derivative.

The effect of Richardson number variation starting from the free–convection regime
is illustrated in figure 12. As Rib decreases (i.e. the mass flow rate increases at given
Ra) the mean temperature profile (a) tends to become less flat, departing from the
free–convection distribution, and eventually attaining a near logarithmic distribution.
The mean velocity profile (b) has a more complex behavior, initially becoming more
blunted down to Rib = 0.1, and then less flat while approaching the Poiseuille limit.
Although the bulk Reynolds number is very low in the light–wind (high-Ra) simulations,
the velocity profile seems to be much different than the laminar Poiseuille profile, which is
also shown in panel (b) for reference. For instance, the flow case Ra8 Re3 (corresponding
to Rib = 100) shows a blunted profile despite having a bulk Reynolds number well
below the expected threshold for forced turbulence to sustain itself in pure shear flow.
This intermediate state is not found in either of the limit cases of Rayleigh-Bénard and
Poiseuille flow, while having some features of both. Regarding the statistics of turbulent
fluctuations (only shown here for Rib > 0.1 for clarity), a very similar pattern as in free
convection is observed down to Rib = 1. A different regime starts at Rib = 0.1, which
is associated with increased importance of friction. Hence, near–wall peaks of u′ and v′

form, and the profile of θ′ tends to flatten in the channel core.
The same properties are reported upon wall scaling in figure 13, to highlight deviations

from the forced convection limit at increasing Rib. In wall units, both the temperature
and the velocity profiles approach the zero–Rib log–law limit from below, and logarithmic
layers for both variables are observed starting at Rib = 0.1. A universal wall scaling for
the velocity and temperature fluctuations is also established at Rib = 0.1, with near–
wall peaks of u′ and θ′ at y+ ≈ 15, and peaks of v′ and w′ further away. At higher
Rib increasing values are found for the wall—scaled velocity fluctuations, and lower
values are found for the temperature fluctuations. This is the result of a change from
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Figure 12: Profiles of mean temperature (a), mean streamwise velocity (b), streamwise
velocity variance (c), vertical velocity variance (d), spanwise velocity variance (e) and
temperature variance (f). The thick grey line in panel (b) corresponds to the laminar
Poiseuille parabolic profile.

wall scaling to free—fall scaling, since here Reb is decreasing at constant Ra, and as a
result vf/uτ =

√

Ra/Pr/(2Reτ ) is increasing, and θτ/∆θ is decreasing at increasing Rib.
Furthermore, the peaks of u′ and w′ tend to come close to each other because of flow
isotropization in wall—parallel planes.

Further insights into changes occurring between Rib = 0.1 and 1 can be gained from
figure 14. In panel (a) we report the distributions of the flux Richardson number

Rif =
−βgv′θ′

u′v′du/dy
, (4.2)

representing the ratio of the production of vertical velocity variance to the production of
horizontal velocity variance. Hence, Rif is expected to be a local indicator of the relative
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Figure 13: Shear-scaled profiles of mean temperature (a), mean streamwise velocity (b),
streamwise velocity variance (c), vertical velocity variance (d), spanwise velocity variance
(e) and temperature variance (f), in mixed convection regime.

dynamical importance of buoyancy as compared to friction. Except for the limiting case
of high Rib, the near–wall region is always dominated by shear, hence it is referred to
as dynamic or convective sublayer (Kader & Yaglom 1990) in the atmospheric science
community. Further up, the flow in the so–called free–convection layer is dominated by
buoyancy. A major change occurs between Rib = 1, where the dynamic sublayer occupies
about 10% of the wall layer, and Rib = 0.1, where this fraction exceeds 50%. A quantity
of great relevance in turbulence models for scalar transport is the turbulent Prandtl
number, defined as the ratio of the turbulent momentum and temperature diffusivities,
namely

Pr t =
νt
αt

=
u′v′

v′θ′
dθ/dy

du/dy
, (4.3)

whose distribution is shown in figure 14(b). Consistently with numerical and experimen-
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Figure 14: Profiles of flux Richardson number (a), turbulent Prandtl number (b), and
v− θ (c), u− θ (d), u− v (e) correlation coefficients in the mixed convection regime. The
dashed horizontal line in panel (a) marks the unit value of Rif .

tal data (Cebeci & Bradshaw 1984; Kader 1981; Pirozzoli et al. 2016), in the forced
convection regime Pr t is close to unity in the near–wall region, and to 0.85 in the bulk
flow up to y/h ≈ 0.5. Notably, the Prandtl number starts dropping from the outer layer
at Rib = 0.01, and its value is well below unity throughout the channel at high Rib. This
behaviour is in clear contradiction with the assumption of constant Pr t advocated in
Prandtl’s free–fall theory, and it clearly indicates that buoyancy is much more effective
in redistributing temperature than momentum. This inference is confirmed by the u− v,
v− θ and u− θ correlation coefficients, shown in panels (c), (d) and (e), respectively. As
found in canonical Poseuille flow (Pirozzoli et al. 2016), Cvθ stays close to 0.4 throughout
the wall layer at low Rib, and it increases with Rib reaching a value of about 0.6 in free
convection, reflecting increased effectiveness of wall–normal motions. On the other hand,
Cuθ (obviously negative) is found to be close to 0.9 near the wall and to decrease with the
wall distance in forced convection, reflecting the similarity in the behavior of u with that
of a passive scalar (Abe & Antonia 2009). The correlation drops sharply past Rib = 1,
reflecting the change in the organization of u by buoyancy–induced vertical motions,
presumably through pressure effects. These findings well conform with measurements (Li
& Bou-Zeid 2011) and LES (Patton et al. 2014) of the convective atmospheric boundary
layer, which consistently showed that scalars becoming more efficiently and momentum
drastically less efficiently transported as buoyancy increases.

4.1. Effect of large-scale motions

In order to quantify the dynamical effect of the large-scale structures (rollers) observed in
the flow visualizations, in figure 15 we show their contribution to the total fluxes of heat
and momentum. For that purpose, we consider the uv and vθ correlations constructed
with the streamwise-averaged velocity fields. As shown by Papavassiliou & Hanratty
(1997); Pirozzoli et al. (2014), streamwise filtering approximately removes the contribu-
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Figure 15: Dynamical effect of large-scale motions: fractional contribution of rollers to
turbulent momentum (a) and heat (b) fluxes.

tion of all the scales of motion except for those which have strong streamwise coherence.
Next, we take spanwise averages to estimate the correlations < u′ >< v′ >, < v′ >< θ′ >
which can be interpreted as the part of turbulent stresses associated with rollers. Because
of the huge size of a three-dimensional instantaneous configuration, all the diagnostics
are collected at runtime and at the end only the latest snapshot, which is also used for
restart, is available. As a consequence any analysis not planned before starting the sim-
ulation, either is obtained from the latest instantaneous field or it requires a new run.
Hence that the distributions in figure 15 are not perfectly smooth, and they can occa-
sionally exceed the overall turbulent fluxes. Overall, the figure supports the expected
result that large-scale eddies are primarily active away from walls. Figure 15(a) further
shows that rollers are quite ineffective in transporting momentum in the free-convection
regime (Rib & 100), and they only become important at lower Richardson numbers, pro-
viding virtually all the momentum flux in the channel core at Rib = 1. About 30− 40%
of the Reynolds shear stress is still due to rollers for weak buoyancy effects, down to
Rib = 0.01, whereas their contribution becomes again small in the forced convection
limit. A similar behavior is also recovered for the heat flux (shown in panel (b)), however
with yet higher influence than for the momentum flux. Rollers appear to be more effec-
tive in transporting heat at high Richardson number, and their maximum contribution
is delivered at Rib = 0.1. An identical behavior is observed for momentum and heat flux
only when buoyancy effects are very small, which corresponds to the range of validity of
Reynolds analogy. Hence, it may be speculated that the previously noticed variation of
the turbulent Prandtl number with Rib is primarily caused by a different behavior of the
rollers.

5. Assessment of Monin-Obukhov similarity

A useful parametrization of the wall region in the presence of mixed convection is
provided by the MO similarity theory (Obukhov 1946; Monin & Obukhov 1954). Start-
ing from the assumption that the correct velocity scale in wall bounded flows is the
friction velocity uτ , and the only dimensionally correct length scale is L as defined in
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Figure 16: Assessment of MO similarity hypothesis for: (a) mean temperature gradient;
(b) mean velocity gradient; (c) streamwise velocity variance; (d) vertical velocity variance;
(e) temperature variance; (f) u−θ correlation. The solid lines indicate a compound of the
scaling laws proposed by Kader & Yaglom (1990), the dashed lines denote the Businger-
Dyer flux-profile relationships with classical values of the constants, whereas the dot-
dashed lines indicate a fit of the DNS data (see table 3). See table 2 for nomenclature of
lines and symbols.

equation (1.1), the following scalings result for the fully turbulent part of the wall layer

y
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dy
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du
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, (5.1)

u′2
i

1/2

uτ
= ϕi

( y

L

)

,
θ′2

1/2

θτ
= ϕθ

( y

L

)

,
−u′θ′

Q
= ϕuθ

( y

L

)

, (5.2)

with −u′v′ ≈ τw, −v′θ′ ≈ Q and the ϕ’s a suitable set of universal functions. The MO
relations are widely used in the meteorological practice and as wall functions in numerical
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simulations of atmospheric circulation as they allow to estimate momentum and temper-
ature fluxes from mean flow gradients evaluated away from the wall (Deardorff 1970;
Stull 2012). Regarding the choice of the universal functions, the typical approach (Kader
& Yaglom 1990) consists of interpolating between the extreme conditions of forced and
free convection. For instance, regarding the scaling of temperature, it is expected that in
forced convection a logarithmic layer of θ forms, hence ϕh ≈ kθ, where kθ is the Karman
constant for passive scalars (Kader 1981). On the other hand, granted the validity of
Prandtl’s theory of free convection (as from equation (4.1)), the scaling ϕh ∼ (y/L)−1/3

would result. A frequently used representation for the universal functions of MO similar-
ity theory is given by the Businger–Dyer flux-profile relationships (Businger et al. 1971;
Dyer 1974), which assume

ϕh =
1

kθ
(1 + γhy/L)

αh , ϕm =
1

k
(1 + γmy/L)

αm , (5.3)

with the typical choice of constants (Paulson 1970) k = kθ = 0.35, γm = γh = 16,
αh = −1/2, αm = −1/4. Hence, these relationships account for strong deviations of the
mean temperature and velocity fields from the alleged (y/L)−1/3 behavior in the limit
of light winds. Similar empirical relations have been proposed for the vertical velocity
variances by Panofsky et al. (1977), which are also included in the figure. In order to
check the validity of the MO similarity predictions, the DNS data are reported in scaled
form in figure 16. For that purpose, data have been collected in a limited part of the wall
layer, identified under the somehow arbitrary conditions that: i) the turbulent heat flux
is higher than 90% of the total flux; ii) the turbulent momentum flux is higher than 90%
of its maximum value. These conditions basically identify the assumptions made by the
MO theory that the viscous fluxes are negligible, and the total stress is approximately
constant. In figure 16 we also show the asymptotic trends suggested by Kader & Yaglom
(1990), as well as the results obtained by fitting the DNS data with Businger–Dyer–like
distributions, with coefficients given in table 3. Panel (a) of figure 16 shows flat behaviour
of the scaled temperature gradient up to y/L ≈ 0.1, followed by a global roll–off with
power–law exponent close to the −1/2 value given by the Businger–Dyer relationships,
but sensibly steeper than the −1/3 value expected in free convection. It should also be
noted that the individual profiles are far from following the predicted scalings, but rather
tend to obey much sharper inverse power laws, as previously discussed in figure 10(a).
Similar observations have been occasionally made in the atmospheric flows literature
(Khanna & Brasseur 1997), and attributed to the importance of h–scaled circulatory
motions, which would imply the inclusion of h/L as an additional parameter in the MO
functional relationships. Incidentally we note that, based on the present DNS data, we
find that h/L is approximately a unique function of the bulk Richardson number, namely
h/L ≃ 3.34Ri0.85b . The scaled mean velocity gradient (figure 16(b)) also has a flat behav-
ior up to y/L ≈ 0.1, with very mild roll–off, likely shallower that the (y/L)−1/4 given
by the Businger–Dyer relationships, although the data scatter here is rather severe, and
again individual profiles follow steeper power laws. It must also be noted that the data
points at the right end of figure 16(b) correspond to low values of Reb and moderate
values of Ra, which might shed some doubt on the direct extension of the DNS trends
to real-world flows. However, we believe that the trends are quite robust, in that the
corresponding flows appear to be fully turbulent, as seen in the flow statistics shown
in figures 12,13. Simulations at higher Reynolds number would be certainly welcome to
support robustness of the trends, although they would require huge computational re-
sources. As pointed out by Rao & Narasimha (2006), parametrization of the momentum
flux in the presence of light wind under unstable stratification is a weak point of cur-
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Quantity k γ α αKY αBDP

ϕh 0.375 5.67 −0.538 -1/3 -1/2
ϕm 0.399 14.6 −0.145 -1/3 -1/4
ϕ1 0.498 0.830 0.361 1/3 /
ϕ2 1.03 0.638 0.452 1/3 1/3
ϕθ 0.318 4.08 −0.420 -1/3 /
ϕuθ 0.214 6.70 −0.690 -2/3 /

Table 3: Coefficients of DNS data fits reported in figure 16, assuming functional de-
pendence of the type ϕ = 1/k(1 + γy/L)α. The coefficients αKY denote the expected
power-law scaling exponents in the free-convection regime predicted by Kader & Yaglom
(1990), and the αBDP those used in the classical Businger–Dyer and Panofsky relation-
ships.

rent weather forecast models, mainly because field experiments typically convey large
scatter for obvious difficulties in achieving stable flow conditions, For instance, based
on field measurements, Kader & Yaglom (1990) even argue about possible inversion of
the ϕm curve at high y/L, which however finds no support in our data. DNS is espe-
cially valuable as sustained flow conditions are achievable, although higher values of the
Reynolds number would be clearly desirable. The velocity and temperature fluctuations
(panels (c)–(e)) globally follow the MO scalings quite well. Especially satisfactory is the
behavior of the vertical velocity and temperature fluctuations in the light–wind regime,
as previously noticed regarding the free–convection convection (see figure 10b,d). This
finding probably points to the fact that vertical plumes are well parametrized by MO
similarity, whereas large–scale circulatory motions obey to a different scaling. In this
respect, Panofsky et al. (1977) pointed out that the correct scale for horizontal velocity
fluctuations is probably the one defined by Deardorff (1970), namely vD = (βgQh)1/3,
which corresponds to Prandtl’s free-fall scale based on the channel height. Assuming

u′2
1/2

∼ vD implies u′2
1/2

/uτ ∼ (h/L)1/3, hence explaining why the global trend of the
streamwise velocity fluctuations with y/L is increasing, whereas the individual profiles
are decreasing with y (also recalling the discussion made on figure 10c). In this context it
is quite surprising that the u–θ correlation (panel (e)) satisfies the expected −2/3 scaling
law in the free-convection regime (Kader & Yaglom 1990), whereas the individual profiles
have strong scatter under conditions of near-neutral stratification.

6. Parametrization of heat transfer and skin friction

The prediction of heat transfer and aerodynamic drag under conditions of unstable
stratification is a topic of obvious interest in engineering and meteorology. Given the
absence of reliable theoretical mean temperature and velocity profiles for flow conditions
far from neutral (Scagliarini et al. 2015), we attempt to derive correlations based on
the available DNS data. For that purpose, we preliminarily try to gain a perception
for the behavior of heat transfer and friction coefficients as a function of the governing
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parameters. In figure 17 we show the computed Nusselt number, defined as

Nu =
2Qh

α∆θ
, (6.1)

as a function of the Rayleigh number, grouped into curves at constant Reynolds number
(a) and constant Richardson number (b). Data are compensated by Ra0.3 to better
highlight scatter among curves. Panel (a) shows that data at sufficiently high Ra tend to
cluster around the free-convection (Ra = ∞) distribution, with departures taking place
at higher Ra as the Reynolds number increases, suggesting that the Richardson number
may be an important parameter to distinguish among different cases. The figure also
shows that the Nusselt number is not a monotonic function of Reb for fixed Ra, with
the counterintuitive conclusion that some small amount of forced convection may yield
reduction of the heat exchange with respect to the pure buoyant case, as also evident
in panel (b). This effect is the likely consequence of sweeping of convective plumes by
large-scale motions, with subsequent loss of efficiency in heat redistribution (Scagliarini
et al. 2014). Fitting the DNS data in the free–convection regime we obtain

Nu(Ra) ≈ 0.1165Ra0.304, (6.2)

with a power–law exponent not too far from that typically reported in this range of
relatively low Ra (Ahlers et al. 2009; Orlandi et al. 2015b). The effect of Richardson
number reduction from pure buoyancy (see figure 17b) is initially a downward translation
of the Nu(Ra) curve, with maximum reduction of up to 20% at Rib = 1. Further reduction
of Rib yields a marked increase in the slope of the Nu(Ra) curve, which tends to attain
a Ra0.45 slope in the forced convection limit. Fitting the DNS data herein reported in
the Rib = 0 limit as well as data at higher Reb (Pirozzoli et al. 2016) yields

Nu(Reb) ≈ 0.0073Re0.802b . (6.3)

A typical engineering approach (Bergman et al. 2011) consists of using either equa-
tion (6.2) if Rib & 1 or or equation (6.3) if Rib . 1. A convex combination of the two
formulas is also sometimes used

Nu(Ra,Reb) = (Nu(Ra)n + Nu(Reb)
n)

1/n
, (6.4)

with n ≈ 3. The performance of equation (6.4), with the limit Nusselt distributions given
in equations (6.2) (6.3) is tested in figure 19(a) against a comparison with the DNS data
in the mixed convection regime. The agreement seems to be fair in the whole parameter
space covered by the simulations, although the formula cannot obviously capture the
previously noticed slight reduction of Nu with Reb which is observed mainly around unit
bulk Richardson number. Quantitative information on the relative error in the prediction
of Nu is given in figure 19(c), which shows maximum relative error of about 20% which
is mainly confined in the low-Reb, low-Ra range, whereas the standard deviation seems
to be no larger than 10%.

The distribution of the friction coefficients, defined as

Cf = 2τw/(ρu
2
b), (6.5)

is shown in figure 18, grouped into curves with constant Ra (a) and with constant Rib
(b). For the sake of reference, in the figure we also show the friction curve for laminar
channel flow, and Prandtl’s turbulent friction law, derived by solving the equation

√

2

Cf (Reb)
=

1

k
log

(

Reb

2

√

Cf (Reb)

2

)

+ C −
1

k
, (6.6)
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Figure 17: Compensated distributions of Nusselt number as a function of Rayleigh num-
ber, grouped into lines with same Reb (a) and with same Rib (b). The dashed line in
panel (b) indicates a Ra0.45 power law.

(a)
102 103 104 10510-3

10-2

10-1

100

Ra=0
Ra=106

Ra=107

Ra=108

Ra=109

Reb

C
f

(b)
102 103 104 10510-3

10-2

10-1

100

Rib=0
Rib=0.001
Rib=0.01
Rib=0.1
Rib=1
Rib=10
Rib=100

Reb

C
f

Figure 18: Distributions of friction coefficient as a function of Reynolds number, grouped
into lines with same Ra (a) and with same Rib (b). The solid and dashed lines in (b) in-
dicate the laminar Poiseuille curve Cf = 16/Reb, and Prandtl’s friction law for turbulent
channels (equation (6.6)), respectively.

with k = 0.383, C = 4.17 (Pirozzoli et al. 2014). We find (panel (a)) that increasing the
Rayleigh number consistently yields an increase of Cf , which however tends to saturate
at high Reb. In the low-Reb limit the friction curves appear to be nearly parallel to the
laminar curve, although the Ra-dependent displacement suggest that the structure of
the velocity field is different from the classical Poiseuille representation, as we previ-
ously pointed out. The same data reported at constant Rib in panel (b) show a steady
upward displacement of the friction curves with Rib, which is suggestive of a possible
parametrization of the friction coefficient in the form

Cf (Ra,Reb) = Cf (Reb) · f(Rib), (6.7)

with Cf (Reb) given in equation (6.6). Fitting the DNS data we obtain the following
empirical representation for the correction due to buoyancy

∆f(Rib) = (1 + 4.64Rib)
0.26

. (6.8)
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Figure 19: Maps of Nusselt number (a) and friction coefficient (b) as a function of Rayleigh
and Reynolds number. The colored contours correspond to the DNS data, whereas the
solid lines indicates fits obtained from equations (6.4),(6.7). The dashed diagonal lines
have constant Rib. Twelve logarithmically-spaced contour levels are shown for each vari-
able, with 1 6 Nu 6 64, 0.001 6 Cf 6 0.1. In panels (c), (d) we show the associated
relative errors of the predictive formulas.

The performance of the predictive formulas (6.7)+(6.8) can be appreciated in figure 19(b),
where Cf is shown in the Ra-Reb plane. It appears that this simple parametrization
correctly captures the increasing trend of Cf in the presence of finite buoyancy, although
quantitative agreement with DNS data is not perfect under all flow regimes. Similarly to
the Nusselt number discussed above, quantitative information on the relative error in the
prediction of Cf is given in figure 19(d) which again shows maximum relative error of
about 20%, which is mainly confined in the low-Reb, low-Ra range, whereas the standard
deviation is no larger than 10%.

7. Conclusions

We have carried out direct numerical simulations of turbulent channel flows with un-
stable thermal stratification in a wide range of Reynolds and Rayleigh numbers varying
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between the extreme cases of pure free and forced convection. Concerning the large–scale
structures, the most interesting effect of mixed convection is the formation of quasi–
longitudinal rollers which fill the entire channel height, and whose spanwise aspect–ratio
may be very large, probably depending to some extent on the size of the computational
box. It is worthwhile noting that this effect, absent in pure Rayleigh–Bénard convection
and in the turbulent channel flow, shows–up for a wide range of Richardson numbers
(based on DNS data, we find at least 0.01 6 Rib 6 100), hence virtually in all situations
where mixed convection is relevant. The core rollers can be interpreted as the turbulent
counterpart of the Rayleigh instability modes, which are imparted a preferential direction
by the mean shear. It should be noted, however, that the laminar rollers have a typical
aspect–ratio of unity, whereas turbulent rollers are typically much more oblate. Another
interesting feature of turbulent rollers is their tendency to meander in the spanwise di-
rection, again in a fashion reminiscent of the wavy secondary instabilities of laminar
rollers. Maximum meandering seems to occur at Rib ≈ 1, whereas maximum ordering is
found in conditions close to pure forced convection, namely Rib ≈ 0.01. The near–wall
flow organization consists of the typical pattern of thermal plumes at Rib & 1, and of
momentum streaks at Rib . 1, with strong modulating influence from the core rollers.
On a more quantitative ground, we have found that rollers contribute to a significant
fraction of both momentum and heat turbulent fluxes in a wide range of Richardson
numbers, which may be close to 100% towards the channel centerline at around unit
Rib. We also find that rollers, especially in the high-Rib regime, tend to be much more
effective in transferring heat than momentum, which is a possible explanation for the
failure of Reynolds analogies, also observed in previous experimental studies. Despite the
simplified setting in which the present DNS are conducted, the above observations are
to a large extent common to the context of atmospheric flows, in which two-dimensional
structures are frequently observed.

While the flow statistics are well understood in the case of pure forced convection,
things are not clear–cut as the limit of free convection is approached. Specifically, in–
depth analysis of the flow statistics shows that the mean temperature is far from the
y−1/3 scaling predicted by Prandtl based on the assumption that the flow is dominated
by wall–attached plumes. Reasons for this discrepancy may be related to the importance
of the core rollers in global redistribution of temperature which destroy strict wall scaling.
Based on the present dataset, however, we cannot rule out the possibility that Prandtl’s
scaling only emerges at Rayleigh numbers much higher than those considered in this
paper and currently accessible to DNS. The same arguments are likely to apply to the
horizontal velocity fluctuations, whose variance is decreasing with the wall distance,
rather than increasing according to y2/3 as required by plume–based scaling. On the
other hand, vertical velocity and temperature fluctuations closely conform to the model
predictions, hence suggesting that vertical motions are mainly controlled by thermal
plumes. These findings have large impact on classical parametrizations of heat flux and
wall friction, mainly based on the Monin–Obukhov dimensional ansatz that wall–scaled
mean flow gradients and fluctuations should be universal functions of y/L. Based on
the present DNS database, we find that this assumption is satisfied with reasonable
accuracy, probably acceptable for ‘first–order’ estimates. However, we also find that the
predictive accuracy of empirical formulas relying on MO similarity varies considerably
depending on the variables. Specifically, we find that the individual profiles of vertical
velocity, temperature variance and the u–θ correlation follow quite well the universal
trends. On the other hand, the profiles of mean temperature and velocity as well as
the horizontal velocity variances only follow the theoretical trends in a global sense,
whereas individual profiles show a radically different behaviour. This is likely to result
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from the coexistence of a plume–dominated scaling with statistics varying with y/L, and
a core–dominated scaling, with quantities scaling as h/L Panofsky et al. (1977). Direct
verification of this inference would require simulations covering individually a wide range
of y/L, which is only possible using simultaneously extreme values of Ra, Reb, and
certainly beyond the current DNS capabilities. A relevant outcome of the present study
is a set of modified Businger–Dyer relationships for the various flow variables based
on fitting the DNS data. Differences with curve fits of current use in meteorological
parametrizations are generally small, except for the mean streamwise velocity, for which
we recover a very mild (y/L)−1/7 variation in the light wind regime, which is sensibly
different from the (y/L)−1/4 of current use. This finding is potentially interesting as
correct parametrization of the light–wind regime can have large impact on the prediction
of weather conditions featuring strong thermal instability, as is the case of the Indian
monsoon circulation (Rao & Narasimha 2006). The present DNS data are especially
important for this purpose, as mean wind data in the light wind regime are extremely
scattered owing to difficulties inherent to field atmospheric measurements. We should
however also recall that the high–Rib regime is particularly challenging also for DNS,
as it corresponds to the bottom–right corner of figure 1, where Rayleigh numbers are
high but Reynolds number are rather low, thus possibly casting uncertainties on direct
applicability of DNS data to the context of atmospheric turbulence. DNS of this flow
regime at higher Reb and/or Ra would be a topic of great interest in our opinion.

Of large practical interest is also the prediction of friction and heat transfer as a
function of the bulk flow parameters. Regarding heat transfer, a peculiar behavior is
observed whereby the addition of bulk mass flow initially leads to a decrease of the Nusselt
number down to Rib ≈ 1, and then an increase moving toward the forced convection
regime. Reasonable estimates for Nu, which however do not incorporate this effect are
obtained by simple geometric averages of the values found in the limits of free and
forced convection. Empirical corrections to the classical heat transfer formulas valid for
neutral channels are also established to incorporate the effect of buoyancy by fitting the
DNS data. A simple parametrization based on the sole bulk Richardson number yields
predictions with typical accuracy of about O(10%) in the range of the (Ra,Reb) space
under investigation.
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