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We study the organization of turbulence in supersonic boundary layers through large-
scale direct numerical simulations at M∞ = 2, and friction Reynolds number in the
range 200 6 Reτ 6 1120, which significantly extend the current envelope of DNS in
the supersonic regime. The numerical strategy relies on high-order, non-dissipative dis-
cretization of the convective terms in the Navier-Stokes equations, and it implements an
advanced recycling/rescaling strategy to stimulate the inlet turbulence. Comparison of
the velocity statistics up to fourth order shows nearly perfect agreement with reference
incompressible data, provided the friction Reynolds number is matched, and provided the
mean velocity and the velocity fluctuations are scaled to incorporate the effects of mean
density variation, as postulated by Morkovin’s hypothesis. The agreement is observed to
improve at higher Reynolds number, consistent with the validity of scaling arguments
based on the mixing length idea, and to extend to the wake region of the boundary layer,
supporting the validity of the momentum thickness Reynolds number based on the wall
dynamic viscosity as a similarity parameter for data at different Mach number. A tiny
layer with nearly logarithmic variation of the mean velocity profiles is found, which is
the symptom of the onset of an overlap layer, and which could not be observed in pre-
vious similar calculations. As also found in the incompressible regime, we observe quite
a different behavior of the second-order flow statistics at sufficiently large Reτ . Most of
them (the wall-parallel velocity components, temperature, and pressure) exhibit a range
of logarithmic variation, which is typical of ‘attached’ variables, whereas the wall-normal
velocity exhibits a plateau away from the wall, which is typical of ‘detached’ variables.
As a consequence, strict wall scaling is lost for the attached flow variables, whose inner
peak is found to increase with Reτ . The modifications of the structure of the flow field
that underlie this change of behavior are highlighted through visualizations of the ve-
locity and temperature fields, which substantiate the formation of large structures with
relatively uniform momentum in the outer part of the boundary layer corresponding to
jet-like and wake-like motions, which extend their influence to the underlying layers, and
which protrude into the outer, irrotational mainstream in the form of turbulent bulges.
The structure (size and orientation) of the characteristic eddies is investigated through
the analysis of the autocorrelations of the flow variables. It is found that the typical
size of the attached eddies roughly scales with the local mean velocity gradient, rather
than being proportional to the wall distance, as happens for the wall-detached variables.
The inclination angle with respect to the streamwise direction of the u-bearing eddies is
found to be quite small throughout the wall layer (about 12◦), whereas the typical angle
of the temperature-bearing eddies tends to be close to 30◦ in the outer layer, reflect-
ing a nearly passive role of temperature in the boundary layer dynamics at the present
Mach number. The interactions of the large eddies in the outer layer with the near-wall
region are quantified through the introduction of a two-point amplitude modulation co-
variance, which characterizes the modulating action of energetic outer-layer eddies on
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other points in the same streamwise/wall-normal plane. Finally, we check the validity of
the Strong Reynolds analogy, and find that the conclusions of previous studies based on
low-Reynolds-number data probably need to be reconsidered.

1. Introduction

The prediction of turbulent high-speed wall-bounded flows remains an active field of
study for its technological importance in the aerospace industry. In this respect, a major
role has been historically played by experiments, whereas direct numerical simulations
(DNS) and large-eddy simulations (LES) have only become common in the last decade
or so. A considerable amount of work has been devoted to the understanding of the
canonical zero-pressure-gradient boundary layer flow, which is itself a challenging task.
Indeed, boundary layers for their own nature are spatially developing flows, and their
structure is strongly sensitive to the particular strategy used to enforce the boundary con-
ditions at the computational inlet. As recently shown through DNS in the incompressible
regime (Simens et al. 2009), but as already observed in experiments some time ago (Erm
& Joubert 1991), the achievement of a fully developed state of the boundary layer (and
thus the correct prediction of the turbulent boundary layer statistics) requires the use
of extremely long computational domains (in excess of fifty boundary layer thicknesses),
which makes accurate numerical simulations extremely computationally demanding.

Numerical simulations of wall-bounded turbulent flows in the supersonic regime are
further slowed down by the inherently larger computational effort, and by the possible
occurrence of shock waves, either in the form of external disturbing elements (such as
in shock wave/boundary layer interactions), or embedded in turbulence (‘eddy shock-
lets’). Therefore, the overwhelming majority of the computational algorithms designed
for LES and DNS of compressible flows rely on some form of upwinding or explicit filter-
ing (and dealiasing in spectral simulations) for numerical stabilization, and most often
incorporate some form of shock-capturing, which implies the introduction of additional
numerical dissipation. As a consequence, although the fine grid spacings used in DNS
generally guarantee adequate representation of the gross flow features, the small-scale
structures may be poorly resolved. Also, most previous numerical studies performed in
the supersonic regime are based on simplifying assumptions to relate the spatial growth
of the boundary layer with its temporal growth in the presence of streamwise periodic
boundary conditions (Guarini et al. 2000; Maeder et al. 2001; Mart́ın 2007). Other stud-
ies rely on the idea of following the entire process of boundary layer transition starting
from laminar inflow conditions into the fully developed region (Pirozzoli et al. 2004), or
on the extension of Lund’s recycling-rescaling technique (Lagha et al. 2011).

While the dynamics of the near-wall layer are sufficiently well understood (Jiménez &
Pinelli 1999), recent studies (Hutchins & Marusic 2007) have highlighted the occurrence of
new physical mechanisms when the Reynolds number becomes sufficiently high, which in-
volve the interaction of energetically significant outer layer structures with the inner part
of the boundary layer. Under such conditions an energy peak emerges in the logarithmic
part of the boundary layer, associated with the appearance of large, streaky structures,
that may be extremely long, and that are currently referred to as ‘super-structures’. Ap-
parently, the presence of super-structures in supersonic high-Reynolds-number boundary
layers had already been documented in the experiments of Ganapathisubramani et al.

(2006). The large-scale motions in the outer layer are regarded to be responsible for the
increase of the turbulence intensities (when reported in inner scaling) with the Reynolds



3

number (Hoyas & Jiménez 2006), and for the modulation of the fine-scale near-wall tur-
bulence (Mathis et al. 2009a). We note that, owing to difficulties in obtaining the full
spatial information in experiments, the detection of super-structures mostly relies on the
analysis of time signals at a given probe, exploiting Taylor’s hypothesis, whose validity
may be questionable when applied to large-scale structures (Jiménez et al. 2010). No-
table exceptions to this statement include the tomographic particle image velocimetry
experimental data by Humble et al. (2009); Elsinga et al. (2010), which provide insight
into the full instantaneous three-dimensional structure of the flow field.

The discovery of the super-structures has led to a series of new large-scale direct
numerical simulations of low-speed boundary layers (Jiménez et al. 2010; Wu & Moin
2009; Schlatter & Örlü 2010a), aiming to probe the behavior of wall turbulence at high
Reynolds numbers. No such attempt has been done in this direction for supersonic wall-
bounded flows. The main purpose of the present paper is to fill in this gap, and pro-
vide accurate information on the behavior of supersonic turbulent boundary layers at
(computationally) high Reynolds number. In order to achieve this goal we have tried to
minimize any source of numerical uncertainty, and developed a numerical algorithm that,
with good approximation, is free from spurious dissipation errors, as well as from any
imprint from the numerical upstream conditions. The flow conditions considered in this
study correspond to free-stream Mach number M∞ = 2, and Reynolds number based on
the local momentum thickness ranging from Reθ = 850 to Reθ = 6070, corresponding
to friction Reynolds numbers from Reτ = 200 to Reτ = 1120. The relatively low Mach
numbers under consideration prevent the emergence of strong compressibility effects with
subsequent formation of turbulent shocklets, that would require the use of some artifi-
cial dissipation to be captured. The range of Reynolds numbers considered extends from
conditions typical of previous studies, into the range accessible from experiments, with
which this work is intended to provide a bridge.

The paper is organized as follows. In § 2 the numerical strategy and the DNS database
are described; the primary turbulence statistics are presented and compared with a wide
body of available experimental data in § 3; the large-scale organization of the flow is illus-
trated in § 4; the statistical organization of the turbulent eddies (in terms of orientation
and size) is addressed in § 5; the inner-outer layer interactions are quantified in terms
of amplitude modulation in § 6; the relationships between the velocity and temperature
fluctuating fields (strong Reynolds analogies) are investigated in § 7; concluding remarks
are given in § 8.

2. Numerical methodology

We solve the three-dimensional Navier-Stokes equations for a perfect compressible gas
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∂xj
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(2.1)

where ρ is the density, ui (i = 1, 2, 3) is the velocity component in the i-th coordinate
direction, E is the total energy, p and T the thermodynamic pressure and temperature,
respectively. The set of the conservation equations is closed with the constitutive relations
for a Newtonian fluid, whereby the heat flux vector qj and the viscous stress tensor σij
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Reδin
Nx Ny Nz ∆x+ ∆y+

δ ∆z+ T0u∞/δin Tfu∞/δin Lav/δ

TBL1 4736 1920 171 200 5.22-4.95 4.72- 6.51 4.51-4.27 149.9 2258.5 0.60
TBL2 12662 4160 221 440 5.86-5.58 9.42-12.35 4.99-4.75 90.8 423.9 0.75
TBL3 29597 7680 331 800 6.84-6.57 11.72-15.50 5.91-5.67 128.1 370.9 0.35

Table 1: Summary of computational parameters for the DNS study. Reδin
is the Reynolds

number based on the inlet boundary layer thickness. ∆y+
δ is the spacing in the wall-

normal direction at the edge of the boundary layer. For all simulations the first point
off the wall is located at a distance ∆y+

w ≈ 0.7. T0 and Tf are the initial and final
time considered for collecting flow samples. Lav is the half-width of the interval used
for statistical averaging in the streamwise direction. Wall units and local boundary layer
thickness are taken at the reference stations listed in table 3.

are prescribed as

qj = −k
∂T

∂xj
,

σij = 2 µSij −
2

3
µSkk δij ,

(2.2)

where Sij = (ui,j +uj,i)/2 is the strain-rate tensor, µ is the molecular viscosity (assumed
to depend on temperature through Sutherland’s law) and k = cpµ/Pr is the thermal
conductivity (the molecular Prandtl number is set to Pr = 0.72).

The Navier-Stokes equations are discretized on a Cartesian mesh and solved by means
of a conservative finite-difference approach. The flow solver relies on central sixth-order
discretization of the convective terms of the Navier-Stokes equations cast in fully split
form (Kennedy & Gruber 2008)
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, (2.3)

where ϕ stands for any transported quantity, being unity for the continuity equation, ui

(i = 1, 2, 3) for the momentum equation, H = γ/(γ − 1) p/ρ + u2/2 for the total energy
equation. As shown by Pirozzoli (2010), this arrangement leads to a locally conservative
formulation, and guarantees discrete conservation of the total kinetic energy in the limit
case of inviscid, incompressible flow, also in the presence of grid stretching in the co-
ordinate directions. The approach allows robust spatial discretization of the convective
terms without the addition of spurious numerical dissipation in the form of upwinding
or filtering, as customary in numerical simulations of compressible flows. When cast in
locally conservative form, the method guarantees excellent computational efficiency, and
it makes hybridization with shock-capturing methods straightforward (Bernardini et al.

2011). The diffusive terms in the Navier-Stokes equations are expanded to Laplacian form
for improved numerical stability, and approximated with sixth-order central difference
formulas, to guarantee proper action of molecular viscosity at the smallest scales resolved
on the computational mesh. The resulting semi-discrete system of equations is advanced
in time by means of a standard, fully explicit fourth-order Runge-Kutta algorithm.

The database analyzed in the present paper is obtained from three distinct direct
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Dataset Reτ Reθ Reδ2 H Cf (×103)

TBL1 205- 273 872-1242 557- 793 3.13-3.07 3.42-3.07
TBL2 448- 591 2082-2921 1327-1863 2.99-2.97 2.76-2.50
TBL3 843-1123 4430-6071 2827-3878 2.93-2.90 2.28-2.10

Table 2: Global flow properties determined from the DNS study. The range of values
refers to the second half of the computational domain, past the recycling station. Reθ =
ρ∞ u∞θ/µ∞; Reδ2

= ρ∞ u∞θ/µw; Reτ = ρw uτδ/µw; H = δ∗/θ.

Station # Dataset Line type x0/δin δ/δin Reτ Reθ Reδ2 H Cf (×103) Mτ

1 TBL1 Dot-Dashed 87.45 2.75 251 1122 715 3.08 3.19 0.0799
2 TBL2 Dashed 71.64 2.21 497 2377 1516 2.98 2.67 0.0730
3 TBL3 Solid 105.60 2.38 1116 6046 3837 2.91 2.11 0.0649

Table 3: Boundary layer properties at the reference streamwise stations considered for
the analysis. Cf = 2τw/(ρ∞u2

∞
); Mτ = uτ/(γRT̃w)1/2.

M∞ Reτ Reθ H Cf (×103)

Eléna & Lacharme (1988) 2.32 1050 4700 3.46 2.15
Smits et al. (1989) 2.9 15000 80000 / 2.83

Hou (2003) 2 6758 34900 2.89 1.62
Bookey et al. (2005) 2.9 501 2400 5.49 2.25
Humble et al. (2009) 2.1 8600 49000 3.14 1.50

Piponniau et al. (2009) 2.28 1080 5100 3.54 2.00

Table 4: Summary of parameters for reference supersonic boundary layer experiments.

numerical simulations (hereafter referred to as TBL1, TBL2 and TBL3) of a spatially
developing zero-pressure-gradient supersonic turbulent boundary layer with free-stream
Mach number M∞ = 2, at Reynolds number from low to moderate, which in the fully
developed region covers the range Reτ = 200−1120 (see table 2). Here Reτ is the friction
Reynolds number, defined as the ratio between the boundary layer thickness δ (based
on 99 % of the external velocity) and the wall viscous length-scale δv = νw/uτ , where
uτ =

√
τw/ρw is the friction velocity, τw is the mean wall shear stress, and νw is the

kinematic viscosity (the subscript w is used throughout the paper to denote quantities
evaluated at the wall). All computations have been performed in a long domain, which
extends for Lx = 106 δin, Ly = 8.3 δin, Lz = 9.6 δin in the streamwise (x), wall-normal (y)
and spanwise (z) directions, δin being the boundary layer thickness at the inflow station.
Additional details on the properties of the computational mesh are given in table 1,
showing that the spacing in terms of wall units is sufficiently small to capture virtually
all the energetically relevant flow scales throughout the wall layer. Further confirmation
of the adequacy of the mesh used for the DNS stems from inspection of the spectral
densities of the streamwise velocity field (Euu), reported in figure 1 as a function of
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Figure 1: Spectral densities of streamwise velocity fluctuations in the spanwise direction
at y+ = 15 in inner scaling (a), and at y/δ = 0.2 in outer scaling (b). See table 3 for line
legend.

the spanwise wavenumber (kz). The spectra do not exhibit any energy pile-up at the
high-wavenumber end which, given the absence of any numerical energy drain in the
solver, indicates that all the flow scales are properly resolved. The figure further shows
excellent collapse of the spectra at high wavenumbers when inner scaling is used, and at
low wavenumbers when the outer scaling is used. The spectral peak observed in panel
(a) at low wavenumbers for the high-Reτ simulations is the signature of an imprint of
the outer-layer eddies on the near-wall region, which will be elaborated further on.

The boundary conditions at the upper and outflow boundaries are specified by unsteady
characteristic decomposition in the direction normal to the boundary (Poinsot & Lele
1992), and setting to zero the time variation of the incoming waves to minimize reflection
of spurious disturbances back into the computational domain. A characteristic wave
decomposition is also used at the no-slip wall, where perfect reflection of acoustic waves is
enforced, and the wall temperature is held fixed to its nominal adiabatic value (Taw/T∞ =

1+r(γ−1)/2 M2
∞

, the recovery factor being set to r = Pr1/3). The flow is assumed to be
statistically homogeneous in the spanwise direction, along which numerical periodicity is
enforced. The two-point correlations in the spanwise direction (also see later section 5) do
not highlight any obvious coherent dynamics associated with finite computational span,
confirming the adequacy of the size of the computational domain.

Particular attention has been devoted to the correct prescription of the inflow boundary
conditions, which is a key ingredient in the simulation of spatially developing turbulent
flows. In a recent study, Schlatter & Örlü (2010a) carried out a detailed comparison of
seven DNS studies of incompressible turbulent boundary layers, and found surprisingly
discrepancies also for basic statistical quantities, which they mainly attributed to differ-
ences in the specification of the inlet conditions. The explanation for these differences
must be traced back to the long time span (and consequently spatial fetch) required for
a boundary layer to forget the initial conditions. As shown by Simens et al. (2009), the
characteristic spatial scale for complete boundary layer decorrelation is approximately
30 − 50 boundary layer thicknesses, which mandates the use of extremely long compu-
tational domains. In the present study the inflow conditions are prescribed through a
recycling-rescaling procedure, suitably adapted to the compressible case (Pirozzoli et al.

2010a), and the recycling station is placed at xrec = 53 δin downstream of the inlet sta-
tion, which is sufficient to achieve full decorrelation from the inflow, as testified from
inspection of the streamwise two-point correlations, as was also done by Simens et al.

(2009). The analysis (not reported) shows that the first half of the domain is contaminated
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by (although minimal) spurious numerical correlation. Consequently, the flow statistics
are only collected in the second half of the domain (x > xrec), where they are believed
to be free from numerical artifacts.

A note of caution must also be issued regarding the sample used for the collection
of the flow statistical properties. First, we must point out that a long initial transient
of the simulations must be discarded for statistical purposes, during which turbulence
spontaneously rearranges to an equilibrium state. We find that a typical indicator to check
the establishment of equilibrium is the boundary layer shape factor (H = δ∗/θ, where δ∗

is the displacement thickness, and θ is the momentum thickness). In the supersonic case
the initial transient is relatively short compared to subsonic boundary layer simulations,
given the virtual absence of feedback waves from the computational outlet, and we have
found that, with proper specification of the recycling procedure, a period T0 ≈ 100δin/u∞

is sufficient. After the end of the initial transient, equally-spaced time samples of the
full flow field have been collected at time intervals ∆t ≈ 1.5δin/u∞, to guarantee a
satisfactory degree of decorrelation between consecutive samples. Since the boundary
layer is spatially developing, homogeneity in the streamwise direction cannot be exploited
in principle, unlike for channel flows. This implies the need to collect many more time
samples of the flow. However, to keep the computational effort within reasonable bounds,
it was decided to perform averaging of the flow statistics at a given station (say x0) over a
small surrounding streamwise interval (−Lav . (x−x0) .  Lav, where Lav ≈ δ). As shown
by Jiménez et al. (2010), streamwise averaging alleviates the effect of numerical noise,
while not introducing significant statistical errors, given the slow streamwise growth of
the boundary layer. Further details on the properties of the statistical ensemble are given
in table 1.

We note that the TBL3 simulation (requiring a total of over two billion points) sig-
nificantly extends the envelope of available compressible boundary layer calculations to
higher Re, and it comes very close in terms of friction Reynolds number to the landmark
incompressible boundary layer simulation of Schlatter & Örlü (2010a), which is hereafter
used as a primary low-speed reference for comparison. Although still far from Reynolds
numbers of technological relevance, and accessible in experiments, the maximum attained
friction Reynolds number Reτ ≈ 1120 is sufficiently high to start observing large-scale
influences on the near-wall region (Schlatter et al. 2009).

For the sake of notational clarity, the streamwise, wall-normal and spanwise veloc-
ity components will be hereafter also denoted as u, v, w, respectively, and either the
Reynolds decomposition (ϕ = ϕ + ϕ′), or the mass-weighted (Favre) decomposition
(ϕ = ϕ̃+ϕ′′, ϕ̃ = ρϕ/ρ), will be used for the generic variable ϕ. Also, consistent with the
classical nomenclature (Pope 2000), we define the inner layer as the region y/δ < 0.1, the
outer layer as the region y+ > 50, the viscous sublayer as the region y+ < 5, the buffer
layer as the region where 5 < y+ < 30, and the near-wall layer as the region y+ < 50.
Referring to the coherent structures, a notational remark is also necessary. In this paper
we call large-scale structures those eddies which populate the outer layer (and scaling
with δ) and small-scale structures those which populate the inner layer (scaling with δv).
This notation is potentially conflicting with that generally adopted by the turbulence
community, whereby the term ‘large-scale’ is used in to denote structures associated
with the velocity fields, whereas the term ‘small-scale’ is used to denote structures as-
sociated with the field of the velocity gradient. The confusion is avoided here by using
the term ‘vortical structures’ to refer to structures associated with the velocity gradient
field. When dealing with turbulent eddies, we will use the terminology ‘attached’ and
‘detached’ to denote eddies whose size is larger and smaller than the wall distance, re-
spectively (Townsend 1976). Attached variables are then designated as those variables
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which can support attached eddies, whereas detached variables only support detached
eddies. This is the case of the wall-normal velocity component, which cannot support
attached eddies because of the blocking effect of the wall.

3. Turbulence statistics

The validation of supersonic boundary layer simulations is hampered by the limited
availability of experimental data, which are far less abundant than for subsonic flows,
and which are affected by significant scatter, mainly related to the greater difficulty in
getting accurate measurements in the supersonic regime (Smits & Dussauge 2006). As
a consequence, validation of compressible boundary layer DNS data is very often made
by comparing with equivalent data obtained in the incompressible regime, assuming that
Morkovin’s hypothesis (Morkovin 1961) holds. In its basic form, Morkovin’s hypothe-
sis amounts to stating that the turbulence time- and length-scales are not affected by
compressibility, whose primary effect is the variation of the mean density and of the ther-
modynamic properties across the wall layer, which also implies variation of the relevant
local Reynolds numbers. Regarding the distribution of the turbulent stresses, assuming
that a constant stress (equilibrium) layer exists, and neglecting the molecular contribu-
tion (which is certainly an accurate assumption sufficiently far from the wall) it follows
that

τ = −ρ ũ′′v′′ = τw = ρw u2
τ , (3.1)

which implies

ũ′′v′′ ∼
(

ρw

ρ

)
u2

τ . (3.2)

Equation (3.1) also suggests that the individual turbulent velocity fluctuations should
scale as

(
ũ′′

i
2

)1/2

∼ (ρw/ρ)
1/2

uτ . (3.3)

The following short-hand notation is then used to denote density-scaled, inner-scaled
velocity statistics

(uv)∗ =
ũ′′v′′

u2
τ

(
ρ

ρw

)
, (ui)

∗ =

(
ũ′′2

i

)1/2

uτ

(
ρ

ρw

)1/2

. (3.4)

As far as the mean velocity distribution is concerned, following the mixing length argu-
ments that lead to the incompressible logarithmic law, one can argue that in the constant
stress layer

−ρ ũ′′v′′ = ρνt
∂ũ

∂y
= ρℓ2m

(
∂ũ

∂y

)2

= ρwu2
τ , (3.5)

where ℓm is the typical size of the stress-bearing eddies. In this paper the term ‘eddy’
is loosely used to indicate a region where one or more flow variables retain a sufficient
degree of coherence, as quantified through the auto-correlation statistics. Consistent with
Morkovin’s hypothesis one can assume that, as in the incompressible case, the size of
eddies in the overlap layer is proportional to the distance from the wall,

ℓm = ky, (3.6)
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Figure 2: Comparison of (a) van Driest-transformed mean defect velocity and (b) velocity
and shear stress fluctuations with reference experimental data (see table 3 for line legend).
Symbols denote experimental data by Eléna & Lacharme (1988) (diamonds), Hou (2003)
(nabla), Bookey et al. (2005) (circles), Humble et al. (2009) (triangles), Piponniau et al.

(2009) (squares).

which leads to a logarithmic law of variation for the effective velocity (van Driest 1951),

u+
V D =

1

k
log y+ + C, duV D = (ρ/ρw)1/2 du, (3.7)

with y+ = y/δv. Therefore, the van Driest effective velocity is often used as a basis
of comparison of flows at different Mach numbers, incorporating to leading order the
effects of mean density variation. As pointed out by Smits & Dussauge (2006), the van
Driest effective velocity is expected to satisfactorily collapse data in the overlap layer,
and (approximately) also in the viscous sublayer, limited to the case of adiabatic walls.
Little is known about the outer layer, even though correlation of experimental data seem
to support universality of the strength of the wake component is terms of a suitably
defined momentum thickness Reynolds number Reδ2

= ρ∞u∞θ/µw.
A comparison of the basic velocity statistics with available experimental data at similar

Mach number (see table 4 for specification of the flow conditions) is shown in figure 2.
Given the lack of reliable data in the inner part of supersonic boundary layers and the
wide disparity in the Reynolds numbers, the mean velocity is reported in outer units
in panel (a), where fair agreement with most experiments is found. Significant scatter
in the experimental data is observed in the distribution of the turbulence intensities
and Reynolds shear stress, shown in panel (b), where velocity fluctuations are scaled
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Figure 3: Comparison of mean velocity distributions with reference incompressible DNS
data (Schlatter & Örlü 2010a), reported with dotted lines. The thin solid line in panel
(a) denotes the standard law of the wall, compounding u+ = y+ with u+ = y+/k + C,
k = 0.41, C = 5.2. Panel (b) shows the compensated mean velocity profiles, the symbols
denoting the reference 1/k log-law values (circles, k = 0.41; squares, k = 0.384). See
table 3 for line legend.

according to equation (3.3). The figure clearly highlights trends also observed in low-
speed boundary layers, on which we will exhaustively report later on. First, the near-wall
peak of the streamwise velocity fluctuations steadily grows with the Reynolds number,
as a consequence of the increased influence of the large-scale outer-layer structures on
the inner layer dynamics, whereas the opposite behavior is found away from the wall,
the switch between the two behaviors occurring at y/δ ≈ 0.2. On the other hand, the
wall-normal velocity component and the shear stress seem to consistently asymptote to a
limiting plateau distribution, which corresponds to the formation of a sizeable equilibrium
layer. The DNS results qualitatively agree with all the available experimental data, but
much better quantitative correspondence is found with the recent data by Piponniau
et al. (2009), with the exception of the wall-normal velocity component, which is known
to be somewhat underestimated in experiments (Eléna & Lacharme 1988). Particularly
impressive is the near collapse of the distributions of the Reynolds shear stress.

The recent availability of a substantial body of DNS data for incompressible boundary
layers (Wu & Moin 2009; Jiménez et al. 2010; Schlatter & Örlü 2010a) at moderate
Reynolds number allows to: i) further validate the present data, given the scatter in
supersonic experiments; ii) quantitatively establish the possible validity of Morkovin’s
hypothesis. Regarding the latter point, going through the available literature it appears
that, although the validity of Morkovin’s assumption is taken for granted, at least in
the supersonic regime (i.e. M∞ . 5), significant uncertainties remain. A comparison
of the velocity statistics with the incompressible data of Schlatter & Örlü (2010a) is
displayed in figures 3, 4, here selected for the availability of high-Reτ data and for the
thoroughly documented absence of post-transitional effects. Note that three stations from
Schlatter’s dataset have been selected that approximately match the friction Reynolds
number at the stations given in table 3, Reτ = 252, 492, 1145 (corresponding to Reθ =
670, 1410, 3630, respectively). Figure 3 highlights a dramatic collapse of compressible and
incompressible DNS data, once density variations are duly accounted for. Interestingly,
the agreement seems to improve as the Reynolds number becomes higher. This is likely
to be a consequence of the onset of clear separation of scales between the inner and
the outer layer, which makes more accurate the hypotheses underlying the derivation of
the van Driest velocity scaling. Such nice agreement has several implications. First, it
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Figure 4: Comparison of fluctuating velocity statistics with reference incompressible DNS
data (Schlatter & Örlü 2010a), reported with dotted lines. Panels (a)-(c) depict the
distributions of Reynolds stress components at stations 1-3, respectively. Density scaling
is used to collapse the two datasets. See table 3 for line legend. The dashed lines in panel
(c) correspond to the predictions of equation (3.8) for i = 1 (top), i = 3 (bottom). The
vertical lines denote the edge of the boundary layer.

supports the reliability of the present dataset, which, as the reference incompressible data,
is apparently free from remnants of the transition process, and therefore can be regarded
as an accurate approximation of a fully developed supersonic turbulent boundary layer.
Second, to our knowledge, this is the first time that the validity of Morkovin’s hypothesis
is so accurately gauged. Third, the results imply that, for many purposes, studies in the
(moderately) supersonic regime also translate to the incompressible regime.

A note of caution is necessary regarding the observed excellent match of the mean
velocity distributions also in the wake region. As previously pointed out, the friction
Reynolds numbers were made to match almost exactly. However, it is highly unlikely
that Reτ can be a good candidate for scaling the outer region, given that simulations
performed at the same Reτ but different Mach numbers yield vastly different strengths of
the wake component (Maeder et al. 2001; Mart́ın 2007; Lagha et al. 2011). In this respect,
a better candidate to collapse data is the momentum thickness Reynolds number based on
the wall dynamic viscosity, Reδ2

= ρ∞ u∞θ/µw. Comparing the values of Reδ2
reported in

table 3 with the previously listed values of Reθ for Schlatter’s data (of course Reδ2
= Reθ

in the incompressible limit) shows that they also match quite well. As a consequence, the
collapse of the mean velocity curves in the wake region may be interpreted as probable
success of Reδ2

in compensating Mach number variations in the outer layer, as argued
in Smits & Dussauge (2006), on the basis of somewhat scattered experimental data. Of
course, final settlement of this issue requires additional studies whereby a wider range of
Mach and Reynolds number are explored.
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Besides the favourable agreement with incompressible data, figure 3 highlights inter-
esting physical features. Upon superficial inspection, panel (a) seems to support the
formation of a logarithmic layer that (at the highest Reτ ) extends approximately from
y+ = 50 to y+ = 200, consistent with the estimates of Hutchins & Marusic (2007), who
reported Reτ ≈ 667 as the lower limit for the onset of a sizeable logarithmic region. How-
ever, inspection of the diagnostic function y+∂u+

V D/∂y+, reported in panel (a) stands
to indicate that probably it is not quite the case. Indeed, the compensated velocity dis-
tribution does not show any significant 1/k plateau, at least for k = 0.41. However, the
formation of an inflection point in the diagnostic function is observed at the highest Reτ

around y+ ≈ 125, corresponding to a value of the log-law constant k ≈ 0.384, which
is the asymptotic value suggested for high-Reynolds number boundary layers (Nagib &
Chauhan 2008). Of course, higher Reynolds number data are needed to confirm or refute
this assertion.

Other interesting features are retrieved from inspection of the fluctuating velocity
variances, shown in figure 4 in inner scaling. We recall that the classical attached-eddy
hypothesis of Townsend (1976) (also see the interesting revisiting of the theory by Jiménez
& Hoyas (2008)) predicts that the formation of a sensible equilibrium layer is accompanied
by the formation of logarithmic layers for the variance of attached variables, whereas no
such layer forms for the variance of detached variables. Quantitative predictions for the
scaling of the velocity fluctuations based on the attached-eddy hypothesis were made by
Perry & Li (1990), who concluded that the variance of the velocity fluctuations should
scale as

u′2
i

u2
τ

= Bi − Ai log(y/δ) − V (y+), (3.8)

where B1 = 2.39, A1 = 1.03, B2 = 1.6, B3 = 1.20, A3 = 0.475, and V (y+) accounts for
viscous corrections. This inference is consistent with the present data, as shown in figure 4
(c), where the predictions of equation (3.8) are shown (setting V = 0) for the streamwise
and spanwise velocity component. One should note that, although the trend is correct,
the value of the constants reported in the original paper of Perry & Li (1990) is larger
than the DNS findings, even though the agreement can be improved by the addition
of the viscous correction. More important, better consistency with the logarithmic law
is observed for the spanwise velocity component than for the streamwise component.
As observed by Jiménez & Hoyas (2008), the latter is likely to be ‘contaminated with
the peaks caused by the streaks in the buffer layer’. It is also interesting to observe the
presence of a bump in the distribution of w′ in the outer layer, which is probably the
signature of large-scale dynamics in the outer layer bulges, and which is not present in
channel flow DNS (Jiménez & Hoyas 2008).

Instructive information is gained from inspection of the thermodynamic properties,
depicted in figure 5. The thermodynamic fluctuations, especially those of the density
field, are useful in turbulence modeling, since they appear in many unclosed terms of
the Reynolds-average Navier-Stokes equations, representing the net contribution of mass
flux (Gatski & Bonnet 2009). For normalization purposes, granted that τw is the natural
scaling factor for pressure fluctuations, we observe that, linearizing the equation of state
around the mean flow properties at the wall one easily obtains

p′

pw

=
ρ′

ρw

+
T ′′

T̃w

. (3.9)
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Figure 5: Distribution of root-mean-square thermodynamic properties in inner scaling.
(a) Mach number; (b) density; (c) temperature; (d) pressure. The horizontal dotted line
in panel (d) denotes experimental data taken outside the boundary layer (Laufer 1964).
See table 3 for line legend.

Multiplying by pw/τw it follows immediately that

p′

τw
=

ρ′

γρwM2
τ

+
RT ′′

u2
τ

, (3.10)

where Mτ = uτ/(γRT̃w)1/2 is the friction Mach number. From equation 3.10 natural wall
scalings for the density and temperature fluctuations follow, which are used in figure 5.
The fluctuating Mach number, reported in panel (a), is seen to scale well with Mτ . Given
the numerical values of the friction Mach number at the three stations here considered
(see table 3), it follows that M ′ is less than about 0.2 throughout the boundary layer.
According to the interpretation of Smits & Dussauge (2006), genuine effects of compress-
ibility are then expected to be weak. Panels (b)-(d) highlight quite a different behavior
of the fluctuations of density, temperature and pressure. First, it is found that in the vis-
cous and buffer layers the pressure and density fluctuations have comparable magnitude,
and they are both larger that T ′, as a consequence of the isothermal state of the wall.
On the other hand, near the edge of the boundary layer, a near equilibrium of density
and temperature fluctuations is observed, which is indicative of the importance of the
entropic mode there, probably associated with sharp gradients of the flow variables at the
edge of the turbulent bulges (see later discussion). Outside the boundary layer temper-
ature and density fluctuations become much less than the pressure fluctuations, which
is a clear indication of the dominance of the acoustic mode, through which boundary
layer noise is radiated to the far field. Incidentally, the observed intensity of the pressure
fluctuations is very nearly independent of Reτ , and close to the experimental correla-
tion data of Laufer (1964) for M∞ = 2 (reported as a dotted line in panel (d)). The
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Figure 6: Higher-order statistics of streamwise velocity fluctuations (panels (a),(b)) and
temperature fluctuations (panels (c),(d)). The skewness is reported in panels (a),(c), and
the flatness in panels (b),(d). See table 3 for line legend. In panels (a), (b) the hollow
symbols correspond to the incompressible DNS of Schlatter & Örlü (2010a), whereas the
filled symbols correspond to the experiments of Eléna & Lacharme (1988). In panels (c),
(d) the symbols correspond to the incompressible DNS data of Kong et al. (2000).

proposed wall scaling yields good collapse of the temperature and density fluctuations
in the inner layer, whereas pressure fluctuations show strong sensitivity to the Reynolds
number, which is a hint of strong outer layer imprinting. It is also interesting to observe
the different behavior of ρ′, T ′, p′ far from the wall, where a distinct logarithmic behavior
is observed for p′ and T ′. Consistent with the previous discussion of Townsend’s theory,
we may conclude that pressure and temperature are attached variables. Less clear is the
behavior of ρ′, which apparently exhibits a plateau in the outer layer. However, as found
in the later analysis of the wall imprint of the turbulence eddies, density has also the
character of an attached variable. The observed odd scaling can then be explained as a
results of the strong peak of density fluctuations at the boundary layer edge.

A comparison of the higher-order velocity statistics with the data of Schlatter & Örlü
(2010a) is reported in figure 6, where the skewness and the flatness of the streamwise
velocity fluctuations are shown, to provide information on the internal intermittency of
the velocity field. As well established for canonical channel flows (Kim et al. 1987), the
probability distribution of the streamwise velocity fluctuations is significantly positively
skewed near the wall. Such behavior is found to be quite insensitive to the Reynolds
number, which is an indication of the robustness of the inner cycle of streaks formation
and bursting (Jiménez & Pinelli 1999). Above the buffer layer the behavior of turbulence
is found to be very nearly Gaussian, with Su ≈ 0 (but negative), Fu ≈ 3, whereas strong
intermittency is found again near the edge of the boundary layer, where very large values
of the flatness are found. The strongly negative value of the skewness near the edge of
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Figure 7: Comparison of DNS data with theoretical correlations. Circles denote DNS
from TBL1-3 datasets (see line legend in table 4). Other symbols: triangles (Komminao &
Skote 2002); squares (Schlatter & Örlü 2010a); diamonds (Simens et al. 2009). The dotted
lines indicate: equation (3.13) (panel (a)); equation (3.14) (panel (b)); equation (3.15)
(panel (c)).

the boundary layer suggests the dominance of weak high-speed events, whereas the low-
speed events are more intense, but rarer. A possible interpretation for this feature will
be provided in the following. Remarkably, the distribution of the skewness and flatness
of the streamwise velocity nearly superpose to the incompressible data of Schlatter &
Örlü (2010a), also near the edge of the boundary layer, which further indicates that the
dynamics of the boundary layer turbulence is essentially incompressible, including the
outermost part of the boundary layer, at least for the flow conditions here considered.
Reasonable agreement is also found with available internal intermittency measurements
available in the supersonic regime (Eléna & Lacharme 1988). Given the similarity of that
test case with the present DNS data at station 3, we expect that the mismatch in the
position of the boundary layer edge is due to inaccuracy in the estimation of the friction
coefficient in the experiments. Also interesting is the distribution of the higher-order
statistics of the temperature field, shown in panels (c) and (d), which indicates similar
values of the flatness compared to u′, but the opposite behavior in terms of the skewness.
As shown later on, this finding is caused by the strong anti-correlation of u′ with T ′. The
trends of the skewness and flatness of T ′ are consistent with those reported by Kong et al.

(2000) for a heated incompressible boundary layer at Reτ ≈ 150 under isothermal wall
conditions, even though the absolute value of the skewness is found to be consistently
larger in the present DNS, so as the flatness in the inner layer, which is an indication of
stronger intermittency when the temperature field is coupled with the velocity field.

Further comparisons of the flow statistics with available correlations are reported in
figure 7, which includes the skin friction coefficient (panel (a)), the root-mean-square
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wall pressure fluctuations (panel (b)), and the inner-layer peak of the root-mean-square
velocity fluctuations (panel (c)). Given the scarcity of direct measurements of these prop-
erties in the supersonic regime, and/or the problems in obtaining accurate estimates, the
DNS data are here compared with existing, well-established incompressible correlations.
In this respect we note that, to compare values of the skin friction coefficient at different
Mach numbers it is customary to exploit suitable transformations, the best known of
which is perhaps the van Driest II transformation (van Driest 1956). As shown by Hop-
kins & Inouye (1971), this amounts to reducing the friction coefficient and the Reynolds
number to ‘incompressible’ values, according to

Cf inc
= Fc Cf , Reθ inc = Fθ Reθ, (3.11)

where, in the case of adiabatic wall conditions

Fc =
Tw/T∞ − 1

arcsin2 α
, Fθ =

µ∞

µw

, α =
Tw/T∞ − 1√

Tw/T∞

(
Tw/T∞ − 1

) . (3.12)

The van Driest II transformed skin friction distribution from the present DNS dataset
is compared in panel (a) with selected incompressible DNS data (also reported in the
comparative study of Schlatter & Örlü (2010a)), as well as with a simple, yet quite
accurate, friction law (Smits et al. 1983)

Cf = 0.024 Re
−1/4

θ . (3.13)

Excellent collapse on the correlation curve is obtained for all the skin friction data ob-
tained from DNS, which (upon van Driest II scaling) replicate the correct skin friction
trend with Reτ . This is a further confirmation of the accuracy of the present data, and
also of the reliability of the van Driest II transformation in collapsing data at different
Mach number. The distribution of the wall pressure fluctuation intensities (scaled by the
wall friction) is reported in panel (b). In the same panel we also show the semi-empirical
correlation proposed by Farabee & Casarella (1991),

p′2w/τ2
w = 6.5 + 1.86 log(max(Reτ/333, 1)). (3.14)

The DNS data show a continuous increase of the inner-scaled pressure fluctuations with
Reτ , at a rate that is consistent with the logarithmic increase of the correlation. This
behavior is likely to be the indication of increased pressure footprint of the outer layer
dynamics (Jiménez et al. 2010), and it will be the subject of a detailed companion
study (Bernardini & Pirozzoli 2011). In contradiction of the prediction of equation (3.14),
the increasing trend is also found to extend to the low Reynolds number range. The peak
of the streamwise turbulence intensity (shown in panel (c)) also consistently increases
with Reτ , highlighting another high-Reynolds-number effect which we will analyze in
detail in a later section. For now, we observe a behavior consistent with the logarithmic
law

u∗

pk
2 = 4.837 + 1.075 log10 Reτ , (3.15)

proposed by Hutchins et al. (2009), even though a consistently larger value is observed
compared to the incompressible case (also check the u∗ peaks in figure 4). As pointed out
by Pirozzoli et al. (2004); Smits & Dussauge (2006), this is likely to be a (small) genuine
effect of compressibility.
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Figure 8: Instantaneous streamwise velocity field in x − z plane at y+ = 15. (a) TBL1
(x0 = 87.5δin), (b) TBL2 (x0 = 71.6δin), (c) TBL3 (x0 = 92.3δin). Contour levels are
shown for −0.25 6 u′/u∞ 6 0.25, from dark to light shades.

4. Flow organization

The overall organization of the turbulent flow can be well understood looking at wall-
parallel slices, reported in figures 8-10 for the streamwise velocity fluctuations, and in
figures 11-13 for the temperature fluctuations field. For the purpose of qualitatively un-
derstanding the variation of the typical scales, data are extracted at various distances
from the wall. Specifically, one slice is cut at y+ = 15, which is the location where peak
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Figure 9: Instantaneous streamwise velocity field in x − z plane at y/δ = 0.3. (a) TBL1
(x0 = 87.5δin), (b) TBL2 (x0 = 71.6δin), (c) TBL3 (x0 = 92.3δin). Contour levels are
shown for −0.15 6 u′/u∞ 6 0.15, from dark to light shades.

turbulence production occurs, and is representative of the inner-layer turbulence regen-
eration cycle. One slice is taken at y/δ = 0.3, which is representative of the outer part
of the boundary layer, and one at y/δ = 0.9, near the edge of the boundary layer, where
the intermittency function attains an inflection point (see the later discussion related to
the external intermittency). To rule out any possible artifact associated with the stream-
wise growth of the boundary layer (Hutchins & Marusic 2007), the slices are extracted
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Figure 10: Instantaneous streamwise velocity field in x− z plane at y/δ = 0.9. (a) TBL1
(x0 = 87.5δin), (b) TBL2 (x0 = 71.6δin), (c) TBL3 (x0 = 92.3δin). Contour levels are
shown for −0.12 6 u′/u∞ 6 0.12, from dark to light shades.

by effectively keeping constant y/δ upon interpolation of the numerical data (which are
naturally collocated at discrete values of y). Similar visualizations to those of figure 8
were also shown by Mart́ın (2004), limited to Reynolds numbers of the order of the TBL1
simulation. No visualization of near-wall streaks in the supersonic regime at moderate
Reynolds number has been previously reported, to our knowledge.

As seen in figure 8, the velocity field in the inner layer exhibits the typical streaky
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Figure 11: Instantaneous temperature field in x − z plane at y+ = 15. (a) TBL1 (x0 =
87.5δin), (b) TBL2 (x0 = 71.6δin), (c) TBL3 (x0 = 92.3δin). Contour levels are shown
for −0.3 6 T ′/T∞ 6 0.3, from dark to light shades.

pattern also observed in low-speed boundary layers, with alternating stripes of enhanced
and reduced momentum, which can be interpreted as the remnants of ‘sweep’ and ‘ejec-
tion’ events, respectively (i.e. wall-ward and outward motions). As expected, the typ-
ical spanwise size of the velocity streaks in the inner layer is significantly reduced at
increasing Reynolds number, since it is expected to scale in wall units, as confirmed
by later quantitative analysis. More tricky is the estimation of the typical streamwise
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Figure 12: Instantaneous temperature field in x − z plane at y/δ = 0.3. (a) TBL1 (x0 =
87.5δin), (b) TBL2 (x0 = 71.6δin), (c) TBL3 (x0 = 92.3δin). Contour levels are shown
for −0.2 6 T ′/T∞ 6 0.2, from dark to light shades.

length scale of the streaks, which is found to be of the order of several boundary layer
thicknesses (Hutchins & Marusic 2007), regardless of the Reynolds number. In the high-
Reynolds number (TBL3) case, besides the obvious fine-scale organization, the streaks
also exhibit distinct larger-scale organization, with apparent clustering of several low- and
high-speed stripes, caused by the imprint of overlaying, outer-layer structures (compare
with figure 9(c)). This imprinting mechanism is quantitatively addressed in §5. Looking
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Figure 13: Instantaneous temperature field in x − z plane at y/δ = 0.9. (a) TBL1 (x0 =
87.5δin), (b) TBL2 (x0 = 71.6δin), (c) TBL3 (x0 = 92.3δin). Contour levels are shown
for −0.15 6 T ′/T∞ 6 0.15, from dark to light shades.

at the velocity field in the outer layer (figure 9), a qualitatively similar pattern is ob-
served at all Reτ , with high- and low-speed velocity streaks, now on a much larger scale.
Note, however, that streaks are much more evident in the TBL3 simulation, which is
an evidence for the emergence of substantial energy at low wavenumbers. The spanwise
spacing of the outer-layer streaks is found to be of the same order of magnitude for all
three simulations, consistent with a change from wall scaling to outer scaling. Evidence
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for large-scale outer-layer streaks in the supersonic regime was first given by Ganap-
athisubramani et al. (2006), who identified them with the superstructures observed in
low-speed boundary layers. The scenario changes near the edge of the boundary layer
(figure 10), where the flow becomes extremely intermittent, with regions of relatively
quiescent, irrotational fluid interspersed with bulges of rotational fluid erupting from the
underlying layers.

The temperature field in the inner layer (figure 11) also reveals a distinctive streaky
pattern, which is qualitatively similar to that of the streamwise velocity field. Looking
carefully, one will observe close correspondence of zones with positive temperature fluctu-
ations with low-speed streaks, and vice-versa. This is a typical manifestation of the well
known tendency for velocity and temperature fluctuations in shear flows to be negatively
correlated. In this case, it is an obvious consequence of the fact the outward wall-normal
motions communicate negative velocity fluctuations and positive temperature fluctua-
tions from the inner, low-speed and high-temperature layers, to the upper layers. This
behavior is very similar to that observed in direct numerical simulation of low-speed
thermal boundary layers (Kong et al. 2000), and supports a relatively passive role played
by temperature fluctuations in the dynamics of supersonic boundary layers (however,
recall the observations made regarding the higher-order temperature statistics). Moving
into the outer layer, the similarity between streamwise velocity and temperature fields
becomes less obvious, as suggested by comparison of figure 12 with 9. Strong correla-
tions of low-speed streaks with negative temperature fluctuations is still observed at this
off-wall location. However, the behavior of temperature fluctuations is here much more
‘isotropic’ than velocity, in the sense that the thermal streaks also spread significantly
in the spanwise direction. High-temperature streaks tend to manifest themselves with
mushroom-shaped heads followed by trailing hot wakes, whereas the low-temperature
ones do not seem to have a particular organization. This differences are symptomatic of
fundamentally different dynamic behavior of the temperature and streamwise velocity
fields, which apparently were not noticed in previous studies. The temperature field near
the edge of the boundary layer (see figure 12) is characterized by mushroom-shaped ejec-
tions of fluid erupting into the outer, cooler stream, and which bear striking similarities
with the cloud-like structures visualized with the Rayleigh scattering technique (which
effectively educes density variations) by Smith & Smits (1995) and Bookey et al. (2005).
Note that the trailing hot wakes are much shorter at this off-wall location. These observa-
tions shed more light into the observed sharp increase of the temperature skewness in the
outermost part of the boundary layers (recalling figure 6(c)). Indeed, the strongly positive
skewness denotes the occurrence of very intense events with positive temperature fluctua-
tions, corresponding to the hot fluid ejections just commented, whereas low-temperature
events are more frequent, but much less intense.

Visualizations of the velocity and temperature fluctuation fields in longitudinal, wall-
normal planes are presented in figures 14,15. The figures clearly highlight the strongly
intermittent nature of the outer-most part of the layer, which is dominated by sharp
fronts separating the mainstream irrotational fluid from the inner rotational motions.
Such interfaces are rather blurred in the velocity visualizations, whereas they look much
neater in the temperature visualizations. As also found in low-speed boundary layers,
deep incursions of outer fluid (valleys) are seen, which reach well into the inner part of
the boundary layer. The overall geometry of bulges, as well as their size, is similar at
the various Reynolds number here considered, which suggests that they obey an outer
scaling. As expected, however, finer-scale features are observed at the edge of the turbu-
lent bulges as the Reynolds number increases. Of great interest is the appearance in the
high-Reτ case of large-scale, ramp-shaped zones having relatively uniform momentum
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Figure 14: Instantaneous streamwise velocity fluctuation field in x − y plane. (a) TBL1
(x0 = 87.5δin), (b) TBL2 (x0 = 71.6δin), (c) TBL3 (x0 = 92.3δin). Contour levels are
shown for −0.15 6 u′/u∞ 6 0.15, from dark to light shades. The dashed lines in panel
(c) highlight tentative boundaries for the large-scale u-bearing eddies.

(sketched with dashed lines in figure 14(c)), which span the entire boundary layer height,
and which were first observed in the low-speed experiments of Adrian et al. (2000).
Those authors observed that the backs of those large structures have typical inclinations
of about 12◦, which is similar to what is found here. The typical slope of the temperature
bulges is found to be substantially larger, and probably closer to 45◦ (also see the later
quantitative analysis). In this respect, we recall that passive scalars in a shearing field
are expected to preferentially align in the principal strain direction, which is 45◦ for a
parallel shear flow (Warhaft 2000). A 45◦ inclination is also frequently quoted in visual-
ization experiments based on passive tracers, and it is the typical inclination of hairpin
vortices (Head & Bandyopadhyay 1981). The more shallow angle of the u-bearing eddies
compared to the temperature eddies then apparently indicate stronger interaction with
the mean flow.
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Figure 15: Instantaneous temperature fluctuation field in x − y plane. (a) TBL1 (x0 =
87.5δin), (b) TBL2 (x0 = 71.6δin), (c) TBL3 (x0 = 92.3δin). Contour levels are shown
for −0.2 6 T ′/T∞ 6 0.2, from dark to light shades.

The visualizations in cross-stream planes (figures 16,17) help elucidating the scale-
separation effect that is typical of higher-Re flows. While the TBL1 simulation does show
a single layer of mushroom-shaped eddies which lift momentum and temperature from
the wall, the TBL3 dataset clearly highlights the juxtaposition of a population of near-
wall eddies resembling those found at low Reτ , with an additional layer of alternating
positive- and negative-velocity eddies, having a roughly circular shape (sketched with
dashed lines in figure 16(c)), and being centered at about y/δ = 0.3. We note that a zoom
in the near-wall region for the TBL3 simulation (shown in panel (d) of the figures) shows
qualitatively the same features as the TBL1 simulation, confirming the invariance of the
near-wall motions as Reτ is increased. Putting together these observations with those
made regarding the streamwise and the wall-parallel flow slices one can also conclude
that the outer layer u-bearing eddies that become energetically relevant at high Reτ
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Figure 16: Instantaneous streamwise velocity field in z−y plane. (a) TBL1 (x0 = 87.5δin),
(b) TBL2 (x0 = 71.6δin), (c) TBL3 (x0 = 92.3δin). Panel (d) shows a zoom of the zone
marked with a red box in panel (c). Contour levels are shown for −0.15 6 u′/u∞ 6 0.15,
from dark to light shades. The dashed circles in panel (c) highlight tentative boundaries
for the large-scale u-bearing eddies.

have shapes similar to the ‘conical eddies’ postulated by Townsend (1976), and for which
evidence has been little so far, with the exception of the work of del Álamo et al. (2006).

A three-dimensional view of the outer layer streaks for the TBL3 simulation is given
in figure 18, where we report iso-surfaces of negative and positive velocity fluctuations,
as well as iso-surfaces of the vortex tube strength (Pirozzoli et al. 2010b), normalized
by the local r.m.s. vorticity (ω′). The figure confirms the hints of two-dimensional rep-
resentations that the outer layer structures come in the form of elongated streaks with
nearly circular cross-section, growing in the streamwise direction. No marked difference
in shape is observed between the low- and the high-speed streaks, although the latter are
frequently disregarded. Looking at the figure more carefully (also see the top projection
in the x−z plane, shown in figure 19(a)), one will see that vortex tubes in the outer layer
have a clear tendency to cluster above the low-speed streaks, rather than around the high-
speed ones. To explain this feature one can (tentatively) assimilate low-speed streaks to
wakes, and high-speed streaks to jets, both embedded in a shearing velocity field. As is
well known, the outer interfaces of jets and wakes tend to roll-up to form compact ring-
shaped vortical objects upon Kelvin-Helmholtz instability. The rings, whose axis would
be aligned with the streamwise direction, would then undergo the action of shear, giving
rise to hairpin-shaped structures (Suponitsky et al. 2005). The sense of the mean shear
is such to promote the (clockwise) vorticity on top of the wake-like streaks, and inhibit
the (counter-clockwise) vorticity on top of the jet-like streaks, which are then seen to
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Figure 17: Instantaneous temperature field in z − y plane. (a) TBL1 (x0 = 87.5δin), (b)
TBL2 (x0 = 71.6δin), (c) TBL3 (x0 = 92.3δin). Panel (d) shows a zoom of the zone
marked with a red box in panel (c). Contour levels are shown for −0.2 6 T ′/T∞ 6 0.2,
from dark to light shades.

be depleted with vortex tubes. In this respect we must specify that very few ‘canonical’
hairpin vortices are observed in the computed fields, whereas a dominance of cane-shaped
and asymmetric hairpins is found, unlike in well-ordered transitional or post-transitional
flows (Wu & Moin 2009). These observations are also consistent with the experimental
analysis of Elsinga et al. (2010), who found clear evidence (upon conditional eddy ex-
traction) of statistical association between negative velocity streaks and hairpin vortices
sitting on top of them. On the basis of our arguments, the opposite behavior is to be
expected underneath the outer layer streaks, in the near-wall layer. Further support to
our claims then comes from inspection of the bottom projection (figure 19(b)) of the flow
field, which highlights vortices residing in the inner layer. In this case, clearer association
of the vortex tubes clusters with high-speed streaks is observed, which is consistent with
our interpretation.

The external intermittency of the outermost part of the boundary layer is quantita-
tively characterized in figure 20. Following Jiménez et al. (2010), the intermittency is
here characterized in terms of the probability that the flow is locally rotational. This
reasoning involves the selection of a suitable threshold value for the modulus of vorticity
fluctuations (ωtr) under which the flow can be regarded as effectively irrotational. Notic-
ing that the vorticity is an inner-scaled quantity, and for consistency with the study of
Jiménez et al. (2010) (see figure 3 of that paper), we stipulate ωtr = 0.005 uτ/δv, and
define the intermittency function as

γω = P (|ω′| > ωtr). (4.1)
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Figure 18: Three-dimensional view of outer layer coherent structures in TBL3 simulation
(only a limited portion of the flow domain is shown). Iso-surfaces of negative velocity
fluctuations are rendered in blue (u′/u∞ = −0.1), and positive velocity fluctuations in
red (u′/u∞ = 0.1). Iso-surfaces of vortex tubes strength (ωt/ωrms = 2) are rendered in
grey shades.

In figure 20 the distribution of γ at different Reτ is compared with available low- and
high-speed boundary layer data, as well as with the recent low-speed DNS data of Jiménez
et al. (2010). The figure should be interpreted with some caution, since the intermittency
in experiments was typically determined by thresholding the velocity (Klebanoff 1955;
Kovasznay et al. 1970; Eléna & Lacharme 1988), the temperature (Murlis et al. 1982),
or the density (Bookey et al. 2005) fields. The figure shows a distinctive error function
shape, and fair agreement with the experiments of Murlis et al. (1982) and the DNS
of Jiménez et al. (2010), whereas the other data, including the only known supersonic
intermittency data of Eléna & Lacharme (1988) and Bookey et al. (2005) yield much
stronger intermittency in the lower half of the boundary layer, although the thickness of
the intermittent layer is similar. The differences with many of the other results may be
explained recalling differences in the definition of γ. In particular, it may be expected
that thresholding the temperature and the vorticity yields similar results in the outer
layer, where the two quantities approximately behave as passive scalars. Comparing the
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Figure 19: Projection of coherent structures in x−z plane, as seen from above (top panel)
and from below (bottom panel), for TBL3 simulation. Flooded contours of u′ are shown
(contours from −0.3u∞ to 0.3u∞, blue to red) at y/δ = 0.3, with superposed vortical
structures (same as in figure 18).

DNS data at different Reτ , is it hard to establish a definite trend, even though it looks
like an asymptotic distribution in the innermost part of the intermittent layer is attained
at the higher Reτ . This is an indication that, consistent with the previous flow visualiza-
tions, the large-scale turbulent bulges approximately scale in outer units. Also, compared
with the results of Jiménez et al. (2010), weaker intermittency is observed, which would
substantiate previous qualitative experimental observations on the effects of compress-
ibility (Smith & Smits 1995), even though the effect is rather small. More quantitatively,
we find that our data can be very accurately fitted with an error function (Kovasznay
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Figure 20: Distribution of intermittency function across the boundary layer (see table 3
for line legend). DNS data are compared with data by Eléna & Lacharme (1988) (squares),
Bookey et al. (2005) (triangles), Murlis et al. (1982) (downtriangles), Kovasznay et al.

(1970) (diamonds), Jiménez et al. (2010) (dots), and with the curve fit of Klebanoff
(1955) (dash-dot-dot line).

et al. 1970),

γ(y) =
1

2

[
1 − erf

(
y − y√

2θ

)]
, (4.2)

where y ≈ 0.92δ can be regarded as the mean wall distance of the intermittent layer, and
θ ≈ 0.16δ is its expected thickness, with weak sensitivity to Reτ .

5. Statistical properties of turbulent eddies

In this section we address the statistical structural properties of the eddies embedded
in the boundary layer through interrogation of the DNS database. Specifically, we aim
at characterizing the size and the orientation of the typical eddies that populate the
wall layer, and elucidate their influence on the boundary layer dynamics. Some of the
issues discussed here have been partially addressed for incompressible channel flows and
boundary layers. However, little is know regarding supersonic boundary layers. Most of
the findings in the supersonic regime are collected in the book of Smits & Dussauge
(2006), and in a series of papers by A.J. Smits and coworkers.

5.1. Two-point correlations

The primary tool to characterize the shape of the turbulent eddies is the two-point
autocorrelation, which for the generic variable ϕ is defined as

Rϕϕ(∆x, y, ∆z; y) =
〈ϕ(x + ∆x, y, z + ∆z, t) ϕ(x, y, z, t)〉

〈ϕ2(x + ∆x, y, z, t)〉1/2 〈ϕ2(x, y, z, t)〉1/2
, (5.1)

the brackets denoting averages taken with respect to time, to the spanwise direction, and
to the streamwise direction (with the limitations stated in §2), and y representing the
distance from the wall of the point around which the statistics are collected. In figures
21-22 the two-point correlations of u′, v′, T ′ in the spanwise direction, Rϕϕ(0, y, ∆z; y),
are reported at all off-wall distances within the boundary layer. The resulting maps
(also used for the analysis of incompressible Couette-Poiseuille flows by Pirozzoli et al.
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Figure 21: Maps of spanwise autocorrelation Rϕϕ(0, y, ∆z; y) of streamwise (ϕ = u,
left column) and wall-normal (ϕ = v, right column) velocity fluctuations. Thirty-two
contour levels are shown, from −0.3 to 1. The dotted lines denote iso-lines of βℓo (see
equation (5.4)), for 0.01 6 β 6 102 (sixteen logarithmically spaced contours are shown).
The solid diagonal line highlights the trend for ‘wall-tangent’ eddies (∆z = y). The
horizontal lines indicate the position of representative wall-parallel flow sections (y+ = 15,
y/δ = 0.3, y/δ = 0.9).

(2011)) are illuminating for the understanding of the overall flow organization across
the wall layer. Similar illustrations were also reported for channel flows by Jiménez &
Hoyas (2008). However, in that paper the dual spectral representation (related to the
autocorrelation through Fourier transform ) was used, and the spectral density with
respect to the streamwise direction was considered. Here we prefer to reason in physical
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Figure 22: Maps of spanwise autocorrelation of temperature fluctuations RTT (0, y, ∆z; y).
Thirty-two contour levels are shown, from −0.3 to 1. The dotted lines denote iso-lines of
βℓo (see equation (5.4)), for 0.01 6 β 6 102 (sixteen logarithmically spaced contours are
shown). The solid diagonal line highlights the trend for ‘wall-tangent’ eddies (∆z = y).
The horizontal lines indicate the position of representative wall-parallel flow sections
(y+ = 15, y/δ = 0.3, y/δ = 0.9).

rather than in Fourier space, which we believe yields a more direct perception for the
structure of the eddies, and mainly consider the correlations in the spanwise direction.
The reason for this choice resides in the observation that (Hutchins & Marusic 2007),
given the peculiar meandering pattern of the turbulence streaks the autocorrelation in
the streamwise direction mainly gives insight into the characteristic wavelength of the
meanders, but says little about their actual streamwise extent, which may be in fact
much longer. Additional difficulties stem from the necessity to properly account for the
growth of the boundary layer when taking streamwise correlations over distances of many
δ’s. Finally, we note that spectral densities in experiments are usually taken with respect
to the streamwise direction by applying Taylor’s hypothesis to time series at a given off-
wall station, which introduces additional uncertainties associated with the application of
Taylor’s hypothesis to the large scales of motion (del Álamo & Jiménez 2009).

Inspection of the u′ spanwise correlations (reported in figure 21 in both inner and
outer units) highlights some fundamental properties of the boundary layer turbulence.
First, at least one minimum of the correlation is observed throughout the boundary
layer, whose spanwise distance from the conditioning point generally increases with the
distance from the wall. This is a clear reflection of the streaky pattern of the velocity
field, which, as shown in the visualizations of figures 8-10, persists all the way up to the
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edge of the boundary layer, and whose spacing steadily increases. In the inner layer the
first minimum (note that its value is positive at the higher Reτ ) invariably happens for
spanwise separations ∆z+ ≈ 50, which implies a typical spacing of the streaks λ+

z ≈
100, coincident with the frequently quoted value for canonical low-speed wall-bounded
flows (Kim et al. 1987). The maximum absolute value of the autocorrelation in the
inner layer always occurs at a wall distance y+ ≈ 15, which is the signature of the
turbulence regeneration cycle (Jiménez & Pinelli 1999). An additional relative minimum
is also apparent in the maps in the outer part of the boundary layer, whose position
and spanwise separation scales well in outer units, being located at y = 0.2 − 0.3δ,
and corresponding to a typical spanwise separation ∆z ≈ 0.3δ. The relative amplitude
of the outer-layer minimum becomes significantly stronger than the inner-layer one as
Reτ increases, reflecting the emergence of an outer mode of turbulent motion, which
was first identified in boundary layers by Hutchins & Marusic (2007), and previously
noticed in the flow visualizations. Given the different scaling of the inner- and outer
layer- modes, their positions and scales spread apart as the Reynolds number increases.
When scale separation is attained, the outer-layer mode is observed to impose a footprint
on the underlying layers through the formation of a large-scale, near-wall minimum. As
a consequence, two typical length scales were observed when discussing figure 8(c). In
this sense we can affirm that, at sufficiently high Reτ , the outer-layer eddies that carry
streamwise velocity become attached to the wall in the sense of Townsend, their size being
at least as large as their distance from the wall. Under these conditions, a logarithmic
layer for the variance of u′ is expected to form (Townsend 1976), which is actually the
case, as observed when commenting figure 4(c).

To get further insight into the change of the typical size of streaks across the boundary
layer, in figures 21 and 22 we also report (with dots) iso-lines of multiples of the outer
eddy length scale (ℓo) defined in equation (5.4), for reasons that will be clarified in the
next section. For now, we observe that such scaling would be dimensionally sound for
homogeneous turbulence subjected to the local mean velocity gradient. The iso-lines of
βℓo (where β is an arbitrary multiplicative constant) are found to be nearly parallel
to the local iso-correlation curves, especially for large values of the correlation. On the
other hand, the iso-correlation curves of u′ are observed to scale quite poorly with the
wall distance (the trend is given by the solid diagonal line ∆z = y).

The autocorrelation maps of the wall-normal velocity fluctuations, shown in the right
column of figure 21 show quite a different scenario, and a single negative minimum is
observed throughout the boundary layer, whose spanwise separation gradually increases
moving away from the wall. The iso-correlation lines in this case are are found to follow
less closely the scaling with ℓo, and a narrow region with linear scaling of the v-bearing
eddies with the wall distance is perhaps observed in the TBL3 case. In the near-wall
region the minimum typical occurs at ∆z+ = 25 which, consistent with the classical
interpretation (Kim et al. 1987), is the signature of streamwise counter-rotating rollers
having a diameter of about 50 wall units. It is important to note that, unlike the stream-
wise velocity, the behavior of v′ does not significantly change with Reτ , and no imprint
on the near-wall region is observed. Accordingly, v has to be regarded as a detached
variable, and its variance (again recalling figure 4) does not show any tendency to form
a logarithmic layer.

The autocorrelations of T ′, shown in figure 22, exhibit a pattern qualitatively similar to
the streamwise velocity, with clear evidence for large-scale organization in the outer layer
at high Reτ , and a negative correlation peak corresponding to thermal streaks which
extends all the way down to the buffer layer. However, since the mean temperature
gradient goes to zero at the wall (recalling that the wall is nominally adiabatic), the
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Figure 23: Autocorrelation maps (Rϕϕ(∆x, y, 0; y)) of streamwise (left column) and wall-
normal (right column) velocity fluctuations in x−y plane for (a) y+ = 15, (b) y/δ = 0.3,
(c) y/δ = 0.9, for the TBL3 simulation. Levels from −0.2 to 1 are shown, in steps of 0.05.
The dot-dashed lines indicate the regression curves obtained from least-square fit of the
autocorrelation of u′.

negative peak becomes much weaker, turning into but a dip in the correlation curve, and
vanishing in the viscous sublayer, owing to the absence of significant turbulent transport
of temperature (the mean temperature gradient at the wall is made to be zero). Although
the outer T -bearing eddies maintain a footprint in the near-wall region, this is much
weaker than for the u-bearing eddies, and their influence apparently does not reach
down to the wall. The maps of density, pressure, and spanwise velocity correlations (not
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Figure 24: Autocorrelation map of temperature fluctuations (RTT (∆x, y, 0; y)) in x − y
plane for (a) y+ = 15, (b) y/δ = 0.3, (c) y/δ = 0.9, for the TBL3 simulation. Levels from
−0.2 to 1 are shown, in steps of 0.05.

reported) also show a characteristic imprinting of the outer-layer eddies on the near-wall
region, which supports the wall-attached character of those variables.

Some insight into the orientation of the turbulent eddies can be gained from inspection
of the spatial autocorrelations of the flow variables in the x − y plane, Rϕϕ(∆x, y, 0; y).
The maps corresponding to conditioning events located at y+ = 15, y/δ = 0.3, y/δ = 0.9
are reported in figures 23-24, where only the statistics corresponding to the TBL3 simula-
tion are shown, the others being qualitatively similar. In the near-wall region the velocity
streaks appear to be lifted away from the wall at a narrow angle, and exhibit stream-
wise coherence over many δ’s. Further away from the wall the correlation also becomes
wide in the wall-normal direction, and significant anti-correlation of streamwise velocity
disturbances located on opposite sides of the boundary layer edge is observed. The or-
ganization of the wall-normal velocity, shown in the right column of figure 23, is quite
different, consisting of compact motions in the near-wall region, and of strongly elon-
gated motions in the wall-normal directions for eddies centered in the outer layer. This
scenario is consistent with the observations of Jiménez et al. (2010) that ‘the structures
of u are long, and those of v are tall’. Inspection of the v′ autocorrelation in the outer
layer for the outermost probing station also highlights the presence of two negative lobes,
located right outside the boundary layer on both sides of the primary positive lobe, at
about ±δ. Together with the observations made for u′ one can then envisage a scenario
whereby an outward ejection (i.e. a strong positive-v′ event, with associated negative-u′

event) taking place near the boundary layer edge, causes an outward excursion of the
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turbulent/non-turbulent interface. As a consequence, acceleration of the outer stream
takes place, which is highlighted by the negative u′ correlation peak in figure 23(c). For
continuity, compensating negative-v′ events are found on each side of the bulge, whose
distance is of the same order of magnitude as the size of bulges visualized in figure 14.
The temperature field, whose autocorrelation maps are shown in figure 24, exhibit a
pattern very similar to u′. However, at the outer layer stations the primary correlation
ridge seems to be much more inclined with respect to the main stream direction, as a
consequence of the more passive dynamics of the temperature field compared to u′, and
consistent with the steep slope of the temperature fronts seen in figure 15.

5.2. Structure angles and length scales

Quantitative information regarding the orientation and the characteristic length scales
of the turbulent eddies are collected here, as extracted from the autocorrelation maps.
For this purpose, the inclination of the eddies with respect to the streamwise direction is
estimated through linear least-square fit of the x−y plane correlations shown in figures 23-
24. The size of the eddies is instead extracted by considering the integral length scale
based on the autocorrelations in the j-th coordinate direction,

Λϕ
j =

∫
Rϕϕ(∆xj) dxj . (5.2)

To avoid problems with lack of convergence of the smallest correlation levels, the inte-
gration extrema for the evaluation of equation 5.2 are taken to be the intersections with
the R = 0.05 correlation iso-level. Marginally different results are obtained with different
choices of the threshold level, even though the qualitative trends remain.

Regarding the inclination of the eddies, figure 25 (where only the results for the TBL3
simulation are shown, the others being similar) shows a very different behavior of the
flow variables. As qualitatively observed in figure 23, the u-bearing eddies have shallow
angles with respect to the flow direction. In particular, their inclination in the outer part
of the boundary layer becomes very close to the ‘universal’ eddy inclination angle of 14◦

for the large-scale coherent structures of turbulent boundary layers (Marusic & Heuer
2007), and also to the characteristic 12◦ inclination angle of the ramp-shaped structures
observed by Adrian et al. (2000). No major influence of the Reynolds number is observed,
at least for the flow conditions probed in this study. Since the v-bearing eddies tend to
be very elongated in the wall-normal direction, their typical inclination (not reported in
the figure) is close to 90◦. The ρ eddies are steeply inclined with respect to the wall,
which can be expected given that density (under the assumption of weak compressibility
effects) obeys a pure advection equation. The T eddies are typically in between ρ and u,
their inclination angle being typically two times larger than the u′ eddies.

We recall that experimental studies in the supersonic regime report typical inclination
angles of 30◦ − 60◦, based on the analysis of the auto-correlation of the streamwise mo-
mentum fluctuations (ρu)′ (Smith & Smits 1995), and of the density fluctuations (Bookey
et al. 2005). The trends given in those experiments (reported with solid symbols in fig-
ure 25(c)) are fully compatible (although the angles are somewhat larger) with those
here obtained for the ρ-bearing eddies, but they are certainly much larger than those
found for the u-bearing eddies. For consistency with the experiments of Smith & Smits
(1995), the size of the (ρu)-bearing eddies was also computed, and found to very very
similar to that of the u-bearing eddies. The reason for the lack of agreement with those
experiments in not clear at this stage, but part of it might lie (Spina et al. 1991; Smits &
Dussauge 2006) in the significant influence of the probe size in the measurement of the
two-point correlations in experiments, or to lack of validity of Taylor’s hypothesis.
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Figure 25: Distribution of the ‘structure angle’ of the flow variables for TBL3 simula-
tion.Symbols: �, ρ; ∆, u; ⋄ ,T. The horizontal dashed line indicates the typical structure
angle (14◦) advocated by Marusic & Heuer (2007). Solid circles indicate the structure
angle measured from correlations of (ρu)′ by Spina et al. (1991), and solid squares denote
data from correlations of ρ′ by Bookey et al. (2005).

The issue of the typical size of the eddies in wall-bounded flows has been frequently
debated both in the incompressible and the compressible flow community. The most
recent measurements of correlations in supersonic boundary layer at the same Mach
number as the present study (and Reτ = 5600) were reported by Ganapathisubramani
et al. (2006). Those authors took measurements at two stations in the outer layer (y/δ =
0.16 and y/δ = 0.45), and found an increasing trend of both the streamwise and the
spanwise length scales with the wall distance. Quantitative inspection of their correlation
maps (see figure 26), however, indicates strong differences with respect to the low-speed
measurements of Ganapathisubramani et al. (2005); Hutchins & Marusic (2007); Monty
et al. (2007), with an increase by a factor of at least four in the streamwise direction and
a factor of two in the spanwise direction, which the authors justified appealing to a wider
extension of the logarithmic layer in the supersonic case. On the other hand, previous
experimental campaigns by A.J. Smits and coworkers (Spina & Smits 1987; Smits et al.

1989; Spina et al. 1991, 1994), performed at M∞ = 3 and much higher Reτ than the
present study, indicated consistent growth of the streamwise size of the (ρu)-bearing
eddies with the wall distance. Furthermore, it was shown that, while the spanwise length
scale is nearly identical to the low-speed case, the streamwise extent is reduced by a
factor of two, at least.

The computed streamwise and spanwise u′ autocorrelations at y/δ = 0.5 are compared
in figure 26 with the low-speed boundary layer experiments of Hutchins & Marusic (2007)
(the friction Reynolds number of the experiment is similar to DNS, Reτ = 1120). The
excellent agreement indicates, with little doubt, that both the streamwise and the span-
wise length scales are apparently unaffected by both compressibility effects and Reynolds
number. Looking more carefully one can observe much closer agreement for the stream-
wise length scale, whereas differences of the order of 15% are observed for the spanwise
length scale. As previously mentioned, the supersonic experiments of Ganapathisubra-
mani et al. (2006) yield provide much larger correlation length scales, to an extent that
is not likely to be explainable with the Reynolds number difference.

The trends of the streamwise and spanwise integral length scales with the wall dis-
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Figure 26: Comparison of streamwise (a) and spanwise (b) autocorrelation coefficient of
u′ for y/δ = 0.5, with the experimental data of Hutchins & Marusic (2007) (M∞ ≈ 0,
Reτ = 1120, denoted with circles) and of Ganapathisubramani et al. (2006) (M∞ = 2,
Reτ = 5600, denoted with crosses).

tance are shown in figure 27 (again, only the data for the TBL3 simulation are shown).
The streamwise integral length scale of u′ (panel (a) of figure 27) shows some interesting
features. First, the length of the inner-layer streaks (as a fraction of δ) is observed to
increase with y, reflecting an inner scaling behavior. However, this result may be a reflec-
tion of the different waviness of the streaks (Hutchins & Marusic 2007), and indeed the
visualizations of figure 8 suggest that their actual length may be similar at all Reτ . The
increasing inner-layer trend is followed by a decrease starting at about y/δ = 0.1, and the
typical integral scale in the outer layer is Λu

z ≈ 0.8δ. The same trend was also observed
for a low-speed boundary layer at Reτ ≈ 1100 by Ganapathisubramani et al. (2005),
who noticed an increase of the streamwise length scales through the log region, followed
by a decrease in the outer wake region. A very similar behavior is observed for the tem-
perature field, even though the typical length of the temperature streaks is apparently
half as for the velocity streaks. This may be a consequence of the apparent lesser degree
of organization of the temperature field in the outer layer (see figure 12), which looks
more ‘isotropic’ than u′. Figure 27 also quantitatively supports the observation that the
v′ motions are much more compact, and have typical length scales of Λv

x ≈ 0.2δ in the
outer layer.

As previously pointed out, the trends of the spanwise integral length scales (shown in
panel (b) of figure 27) are perhaps more relevant to understand the change of the char-
acteristic size of the eddies occurring across the wall layer. Furthermore, reference data
in the incompressible regime are available (Ganapathisubramani et al. 2005; Hutchins
et al. 2005; Monty et al. 2007). In the last mentioned paper the integral length scales of
u′ were estimated from the distance between two successive Rϕϕ = 0.05 crossings, rather
than from the integral of the correlation. Nevertheless, the data (see bottom right panel
of figure 27) have exactly the same trend as the integral length scale deduced from the
present DNS data. Even better agreement is found by applying the same definition used
by Monty et al. (2007), with a consistent overprediction of the order of 15% with respect
to incompressible data.

The figure highlights a continuous increasing trend of the integral scales of all flow
variables, with a change of slope occurring at about y/δ = 0.15. This trend was taken
by Monty et al. (2007) to be an indication of the validity of Townsend’s attached-eddy
hypothesis, whereby the eddy length scales tend to be linearly proportional to the wall
distance. In our opinion, based on inspection of the u′ integral length scales curves, no
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Figure 27: Distribution of integral length scales in streamwise direction (a) and in span-
wise direction (b) for TBL3 simulation. Symbols: ∆, ϕ = u; ∇, ϕ = v; ⋄ ,ϕ = T . The
filled circles panel (b) indicate experimental data from Monty et al. (2007), and the solid
triangles denote the integral length scales of u′ determined from the crossing with the
Ruu = 0.05 value.

sizeable range with linear variation can be detected. On the other hand, the integral scale
of v′ (Λv

z) does show a linear scaling for y/δ . 0.2, and it is always less (by at least a
factor of two) than Λu

z . The figure also shows that the thermal streaks are marginally
wider than the velocity streaks.

To explain the observed trends of the eddies size (say, ℓ) we note that, based on the
general assumption that it depends on a typical flow length scale (L), on a typical velocity
scale (V ), and on the local velocity gradient, and assuming a power-law behavior, the
following scaling results

ℓ

L
∼
(

V

L

)α (
∂ũ

∂y

)
−α

, (5.3)

where α is an arbitrary exponent. It is natural to assume that in the inner layer L = δv,
V = uτ , and in the outer layer L = δ, V = uτ . Strict viscous scaling at the wall implies

that ℓ ∼ δv = ν
1/2
w (∂u/∂y)

−1/2
w , whence α = 1/2 follows, and reasonable scaling laws for

the size of eddies in the outer and in the inner layer are

ℓo

δ
∼
(uτ

δ

)1/2
(

∂ũ

∂y

)
−1/2

,
ℓi

δv
∼
(

uτ

δv

)1/2 (
∂ũ

∂y

)
−1/2

. (5.4)
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Figure 28: Distribution of integral length scales in the spanwise direction, scaled by the
reference inner (a) and outer (b) scales defined in equation 5.4, and by the local value
of the mixing length (c). See table 3 for line legend. Symbols: ∆, ϕ = u; ∇, ϕ = v; ⋄
,ϕ = T .

To test the validity of the proposed scalings, in figure 28 the spanwise integral length
scales of u′, v′, T ′ are scaled with respect to the outer (panel (a)) and inner length
scales (panel (b)) defined in equation 5.4. Remarkably, it is found that the normalized
scales of u′ and T ′ are approximately constant with the wall distance and with Reτ , which
supports a good degree of universality of the proposed scalings. However, one should note
a consistent drift to larger values of the inner layer scales with Reτ , which is a result of the
imprinting of the outer layer eddies (recall figure 21). The proposed scalings apparently
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do not work for v′. The reason for the failure resides in its nature of detached variable,
which only supports eddies with maximum size equal to the wall distance. Consistently,
a nearly linear range of variation of Λv

z is observed around y/δ ≈ 0.1. An alternative
scaling for the eddy size can be considered, based on the mixing length assumption given
in equation (3.5), whereby one can define a characteristic eddy length scale as

ℓm ∼
(

τw

ρ

)1/2 (
∂ũ

∂y

)
−1

. (5.5)

The integral length scale of the eddies scaled by the mixing length ℓm is reported in
figure 28(c). This time (paying attention to the range of values in the plots) better
collapse of the size of the outer layer v′ eddies is found, compared to the u′ eddies. The
conclusion might then be drawn that detached eddies approximately scale with the local
mixing length, whereas attached eddies scale according to (5.4). Although not shown, the
behavior of the spanwise velocity and of the pressure and density fluctuations corresponds
to that of attached variables.

6. Turbulence modulation

The possible occurrence of a modulating action of the large-scale outer motions on the
small-scale near-wall structures was first investigated in the context of incompressible
boundary layers by Mathis et al. (2009a). Those authors found that, in addition to the
(linear) imprinting mechanism previously discussed, nonlinear phenomena of amplitude
modulation (AM) also take place between the inner- and the outer-layer eddies. The
intensity of the amplitude modulation imparted by a large-scale eddy placed at a location
P1 on a small-scale eddy placed at another location P2 was quantified by those authors
by: i) determining the high-pass filtered component of the velocity signal at P2 (say u2H);
ii) demodulating u2H by means of the Hilbert transform to obtain its envelope (say u2E);
iii) determining the low-pass filtered component of the signal envelope (say u2EL); and
iv) calculating the correlation coefficient (hereafter referred to as amplitude modulation
coefficient, RAM ) between the low-pass filtered envelope at P2 with the low-pass filtered
signal at P1,

R12
AM =

u1L u2EL√
u1

2
L

√
u2

2
EL

. (6.1)

Although the correlation can in general be applied to signals taken from two distinct
points, Mathis et al. (2009a) argued that the one-point AM coefficient provides a reason-
able estimate for the full two-point AM coefficient, and exploited a one-point analysis to
quantify inner/outer interaction effects across the boundary layer. High levels of positive
and negative correlation were observed in the inner and outer region of the wall layer,
respectively, with a zero crossing in the logarithmic region. According to the interpre-
tation of Mathis et al. (2009a), the positive correlation found in the near-wall region
stands to indicate that positive (negative) large-scale velocity excursions in the outer
layer induce local enhancement (suppression) of the small-scale near-wall turbulent fluc-
tuations. The opposite effect is observed in the outer layer. The analysis was extended to
pipe and channel flows by Mathis et al. (2009b), who observed approximate invariance
of the one-point AM coefficient in the inner region when data are compared at similar
friction Reynolds number. To our knowledge, the analysis of the modulation mechanisms
in supersonic flows has not been attempted, so far.

The distributions of the computed one-point AM correlation coefficients R11
AM (y) (for

obvious reasons related to homogeneity of the flow, only the y dependence is left) are
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Figure 29: Distribution of the one-point amplitude modulation coefficient (R11
AM ), ac-

cording to equation (6.1). The symbols denote experimental incompressible boundary
layer data at Reτ = 3020 (Mathis et al. 2009b). See table 3 for line legend.

reported in figure 29, as a function of the wall-normal inner-scaled coordinate. For the
purpose of evaluating the various terms in equation (6.1), filtering is performed in the
spanwise direction, with cut-off wavelength λz = δ/2, which, based on inspection of
figure 21, approximately marks the boundary between the small- and the large-scale
domains. The effect of varying the filter width was also addressed, but no qualitative
change was observed. An overall consistent trend with the experiments of Mathis et al.

(2009b) is found throughout the wall layer, which, in view of the wide disparity in the
Reynolds numbers, and of the different approach used for filtering (spatial filtering is used
here as opposed to filtering in the time domain in the experiments) makes us confident
that the AM quantification procedure is properly implemented. The typical behavior
observed in all canonical wall-bounded flows is recovered, with an inversion of the sign
of the modulation coefficient from positive to negative taking place in the DNS data
at approximately y/δ = 0.035. The main difference with respect to the experimental
measurements resides in the formation of a plateau in the overlap layer, where DNS data
level off to about −0.2.

As shown by Schlatter & Örlü (2010b), the one-point AM coefficient is strongly related
to the local skewness of velocity fluctuations. Indeed, the qualitative similarity of the
maps shown in figure 29 with the streamwise velocity skewness (reported in figure 6(a))
is striking. Schlatter & Örlü (2010b) were able to show that this similarity also persists
when applying the AM analysis to synthetic random signals having the same probability
density function as the original velocity signals (and thus having non-zero skewness),
indicating an inherent link between skewness and one-point modulation, which does not
necessarily reflect genuine physics.

To overcome the possible limitations of the one-point modulation analysis we propose
to fully exploit the two-point AM correlation. Specifically, to evaluate the modulation
mechanism we consider the two-point covariance between the large-scale velocity at P1

and the low-pass filtered envelope of the velocity signal at P2

C12
AM = u1L u2EL. (6.2)

The AM covariance is here preferred over the corresponding correlation coefficient, since
it has the advantage of providing a perception for the absolute importance of the mod-
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Figure 30: Maps of two-point AM covariance (C12
AM ) of the streamwise velocity, according

to equation (6.2), at stations 1 (a), 2 (b), and 3 (c). The position of the modulating event
(y/δ = 0.2) is highlighted with a cross, and data are scaled with respect to u2

τ . The dot-
dashed lines indicate the local 14◦ direction with respect to the horizontal.

ulation effect between any two probe pairs. The modulation covariance thus defined is
applied to study the modulating influences in the boundary layer by fixing the condition-
ing point P1 at y/δ = 0.2, which is representative of the outer-layer eddies. The probe P2

is then displaced with respect to P1 in the streamwise and wall-normal directions, thus
obtaining AM covariance maps which depend on the wall-normal coordinate and on the
streamwise separation, say ∆x.

The two-dimensional modulation maps determined from this procedure are shown in
figure 30. For clarity of the representation the wall-normal distance is reported in log-
arithmic scale to zoom into the near-wall region, and the position of the modulating
probe is highlighted with a cross. For guidance in the interpretation, the local 14◦ direc-
tion about the modulating point is also drawn with a dot-dashed line. Regardless of Reτ ,
a negative modulation peak is observed in the proximity of the conditioning point, which
is associated with the locally negative value of the velocity skewness. More relevant is the
emergence of a positive modulation peak in the proximity of the wall, whose intensity
grows at increasing Reτ , and which is likely to be the signature of a genuine modulating
influence of the outer layer eddies on the near-wall layer. It is interesting to note that
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such positive peak approximately leans in the positive 14◦ direction with respect to the
conditioning point, which leads to interpret the observed modulation as the results of
the interaction of the large-scale outer-layer u-bearing eddies (statistically embodied by
the map of figure 23(b)) with the wall. It is also remarkable that the site where the peak
modulation occurs lies, for all cases, at a wall distance y+ ≈ 6.5, and its influence extends
to both the viscous sublayer and the buffer zone at sufficiently high Reτ .

7. Thermal statistics

The relationships between velocity and temperature has great relevance in high-speed
flight applications, given the strong coupling between thermal heating and the develop-
ment of boundary layers. A class of useful relations was originally developed by Morkovin
(1961), which are collectively referred to as strong Reynolds analogies (SRA). From the
definition of the total temperature (T0 = T + uiui/(2cp)), linearization about the Favre
mean values, and neglecting the fluctuations of the total temperature yields

T ′′ = − ũu′′

2cp
, (7.1)

which implies

RuT =
ũ′′T ′′

(
ũ′′2

)1/2 (
T̃ ′′2

)1/2
= −1, (7.2)

(
T̃ ′′2

)1/2

/T̃

(γ − 1)M2

(
ũ′′2

)1/2

/ũ

= 1, (7.3)

with M2 = ũ2/(γRT̃ ). SRA relations can also be derived for the relationships between
the turbulent heat and momentum fluxes, as embodied by the turbulent Prandtl number,

Pr t =

[
−ρũ′′v′′

]
∂T̃ /∂y

[
−ρṽ′′T ′′

]
∂ũ/∂y

. (7.4)

Taking the wall-normal gradient of the total temperature and averaging yields

∂T̃0

∂y
=

∂T̃

∂y
+

ũ

cp

∂ũ

ỹ
, (7.5)

which, combined with equation 7.1 yields

Pr t =

(
1 − ∂T̃0

∂T̃

)
−1

. (7.6)

Assuming uniform mean total temperature further yields

Pr t = 1, (7.7)

which, together with equations (7.2),(7.3), constitutes the original set of SRA equations
proposed by Morkovin. Extended versions of the original SRA have been developed by
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Figure 31: Distributions of temperature-velocity correlation coefficient (a), and turbulent
Prandtl number (b). The symbols in panel (a) indicate incompressible heated channel flow
DNS by Abe & Antonia (2009) at Reτ = 180 (squares), 395 (triangles), 640 (diamonds),
1020 (circles). The circles in panel (b) indicate incompressible heated boundary layer
DNS data by Kong et al. (2000).

various authors, based on mixing length assumptions, and having the general form

(
T̃ ′′2

)1/2

/T̃

(γ − 1)M2

(
ũ′′2

)1/2

/ũ

≈ 1

c
(

1 − ∂T̃0/∂T̃
) , (7.8)

where either c = 1 (Gaviglio 1987), or c = Pr t (Huang et al. 1995).
The distributions of the temperature-velocity correlation and of the turbulent Prandtl

number obtained from DNS are shown in figure 31. Panel (a) shows lack of correlation
between u′ and T ′ in the region immediately adjacent to the wall, where the mean tem-
perature gradient is zero, and therefore turbulent transport of temperature is prevented.
The maximum of the correlation coefficient is found in the buffer layer, which becomes
weaker with increasing Reτ . For y/δ > 0.5 the distributions become independent of
Reτ , and level off to about −0.55. A drop in the correlation is observed in the vicinity
of the boundary layer edge, a feature which is present in many experiments (including
those shown in the figure), but absent from most DNS (with the exception of Guarini
et al. (2000)). The behavior of RuT (which is in contradiction of (7.2)) reflects the pre-
viously noticed association between thermal and momentum streaks within the buffer
layer, which becomes weaker in the outer layer. Experimental data in the supersonic
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Figure 32: Assessment of Strong Reynolds Analogies (SRA). Panel (a): SRA prediction
(equation 7.6) of turbulent Prandtl number. Predictions of temperature-velocity corre-
lations from strong Reynolds analogies are reported in panels (b)-(d). (b) Morkovin’s
analogy (SRA); (c) Gaviglio’s analogy (GSRA); (d) Huang et al.’s analogy (HSRA).

regime (Gaviglio 1987) also indicate a flat distribution of RuT , but with larger abso-
lute values (around 0.8 − 0.9), in closer agreement with SRA predictions. The turbulent
Prandtl number (shown in panel (b)) has a similar behavior, with a near-wall peak in
the buffer layer whose strength decreases with Reτ , and an apparent Reynolds number
independent decreasing trend for y/δ > 0.5. Also in this case, the basic SRA relation
(7.7) is not satisfied. Significant scatter of turbulent Prandtl number data was observed
in previous supersonic DNS, typically with an odd increase toward the edge of the bound-
ary layer, which is presumably due to lack of resolution, or lack in the convergence of the
flow statistics. Comparison with DNS of incompressible heated wall-bounded flows (Kong
et al. 2000; Abe & Antonia 2009) shows the same trends as a function of y and Reτ .
However, larger values of RuT and Pr t are consistently found in that case, which is an
evidence of stronger dependence of temperature on velocity fluctuations in the case the
former behaves as a passive scalar.

An assessment of the various extended SRA relations in the light of the DNS data is
attempted in figure 32. To visually appreciate deviations of the predictions from DNS
data, the left-hand sides of equations (7.3), (7.6), (7.8) are divided by the corresponding
right-hand sides, so that validity of a SRA relation implies that the associated indicator
is unity. Panel (a) shows excellent prediction of the turbulent Prandtl number from
the (extended) SRA relation (7.6), and of the temperature-velocity correlation from the
standard SRA relation (7.2), for y/δ < 0.5. Even outside that range, the SRA relations
satisfactorily eliminate the Reynolds number dependence from the data. Better results
in the outer layer are obtained with the use of HSRA, for which the indicator function
ranges between 0.8 and 1. Overall, the trends are not too far from those seen in the
previous study of Guarini et al. (2000). We must recall that the present study is limited
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to a single Mach number, and to adiabatic wall conditions. As shown by Duan et al.

(2010), the wall thermodynamic state has a strong impact on the performance of SRA.
It would then be interesting to verify the performance of the strong Reynolds analogies
for different flow conditions than those considered here, which we leave for future studies.

8. Conclusions

The structure of supersonic adiabatic boundary layers has been investigated through
use of DNS data at M∞ = 2, and up to Reτ ≈ 1120, which allows to start probing high-
Reynolds-number effects. Particular attention has been paid to the numerical strategy,
which apparently does not suffer from problems of spurious numerical dissipation and
from artifacts related to improper enforcement of the turbulence inlet conditions. The
comparison of the velocity statistics with reference incompressible DNS data shows that
at this Mach number the effects of the flow compressibility can be effectively incorpo-
rated by accounting for the mean density variations across the wall layer. When this is
done, the velocity statistics up to fourth order very nearly collapse on the incompressible
distributions, provided the friction Reynolds number is matched. To our knowledge, this
is in fact the most spectacular evidence in favour of the validity of Morkovin’s hypothesis
presented so far, given the unavoidable scatter in experiments previously advocated in
support. Similarly, extremely precise collapse of the skin friction coefficient on incom-
pressible scaling laws is observed when the van Driest II transformation is applied, which
takes into account stratification effects to leading order. The effects of Reynolds number
increase mainly manifest themselves with loss in strict scaling of the near-wall properties
with viscous units. As also observed in the incompressible regime, the variance of the
wall pressure and the squared peak of the streamwise velocity fluctuations are found to
grow logarithmically with Reτ , with weak effect of compressibility.

Flow visualizations have been used to establish the qualitative structure of the inner-
and outer-layer eddies, and to quantify their interactions. The nature of the inner-layer
energy-containing eddies is found to be the same at all Reτ , with the typical alternating
pattern of high- and low-speed streaks, whose size roughly scales in wall units. A simi-
lar pattern (but with length scales comparable to δ) also emerges in the outer layer at
sufficiently high Reynolds number, which was not observed in previous numerical sim-
ulations. The structures associated with the vorticity field are found to have a typical
cane-like shape, and few instances of hairpin-shaped vortices are observed, the boundary
layer being fully developed. At high Reynolds number, vortex tubes in the outer layer
tend to stand on top of the low-speed streaks, which probably explains why low-speed
streaks generally capture more attention compared to the high-speed streaks. The arrays
of vortex tubes riding the low-speed streaks can be identified with the packets of hairpins,
that in the commonly accepted view are regarded to be responsible for the formation of
super-structures (Adrian et al. 2000). On the other hand, it is found that vortices in the
inner part of the boundary layer tend to concentrate under the outer-layer low-speed
streaks. Our interpretation is that vortex tubes (or hairpins) are the consequence, rather
than the cause, of the presence of velocity streaks. As discussed in the paper, vortex
tubes in the wall layer can be interpreted as the results of the roll-up of vorticity at the
edge of the large-scale streaks, under the action of the mean shear. As a consequence of
the clockwise orientation of the mean shear, the vortices tend to cluster at the top of the
low-speed streaks, and at the bottom of the high-speed ones.

The analysis of the autocorrelations of the flow variables gives quantitative information
on the structure of the energy-containing eddies. Some variables, such as u and T , which
are ‘attached’ to the wall, in the sense that they support eddies whose size may be larger
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than the wall distance, can leave an imprint on the near-wall region. Eddies belonging to
this family are found to have sizes proportional to a length scale based on the local mean
shear (in the outer layer, ℓo ∼ (uτδ)1/2 (∂ũ/∂y)−1/2), and the variance of the associated
variables exhibits a logarithmic range of variation in the outer layer. On the other hand,
the wall-normal velocity component (which is constrained by the blocking effect of the
wall) appears to be detached from the wall, the associated eddies having size which is
smaller than the wall-attached eddies, and which approximately scales with the local
mixing length scale (ℓm = (τw/ρ)1/2 (∂ũ/∂y)−1). It should be noted that ℓm is bound
to vary linearly with the wall distance in the presence of logarithmic variation of ũ, and
therefore a narrow range of linear variation of the size of the v-bearing eddies with the
wall distance is found. Given that active motions (i.e. those containing fluctuations of
the wall-normal velocity) are responsible for the production of Reynolds stress, the fact
that only the v-bearing eddies scale with the wall distance is entirely consistent with the
arguments leading to the logarithmic law for the mean velocity.

Some conclusions can also be drawn regarding the effects of compressibility on the
size of the eddies, and specifically of the u-bearing eddies, which have traditionally been
studied in experiments. We find that the integral longitudinal length scales are virtually
the same as in the incompressible case. Weak effects are discovered on the spanwise
length scale, which is found to overestimate incompressible data by 15% approximately.
This is in contradiction of available experimental data at similar Mach number, which
mostly suggest reduction of the longitudinal length scale, and no effect on the spanwise
length scale. Exploration of the higher supersonic regime is certainly needed to draw
more definite conclusions in this respect. However, we note that changes in the typical
size of the eddy structures would probably invalidate many consequence of Morkovin’s
hypothesis, such as the van Driest transformation, which is shown not to be the case
here.

Differences are also found in the orientation of the large-scale eddies for the different
variables. The u-bearing eddies are found to be typically inclined at 12◦ − 14◦ with
respect to the streamwise direction, which is the same orientation suggested for the large
structures in incompressible boundary layers, and which is probably related to the typical
inclination of the ramp-like interfaces between zones with different momentum (Adrian
et al. 2000). Other variables, such as density and temperature, are found to have steeper
inclination with respect to the wall, as a consequence of their behavior more similar
to that of passive scalars, which are expected to align approximately along the 45◦

direction. The v-bearing eddies have a very different behavior, being very compact in
the wall-parallel directions, while extending their influence mainly in the wall-normal
direction.

Besides an imprinting on the near-wall region in the form of juxtaposition of different
scales of motion, attached eddies are found to convey a more subtle effect through the
modulation imparted on the near-wall small-scale eddies. This effect, which was observed
and quantified in low-speed boundary layers, is here characterized in terms of a new
metric, namely the amplitude modulation covariance of the velocity field. This tool allows
full characterization of the modulating influence of eddies placed in the outer layer (here
the reference point is set at y/δ = 0.2) on any other point in the streamwise/wall-normal
plane. The main result is the emergence of a positive modulation peak whose amplitude
steadily grows with Reτ , which is approximately oriented in the backward 14◦ direction
with respect to the modulating probes, and which is located at the root of the buffer layer
(y+ ≈ 6.5). The presence of this peak sheds further light on the previous observation that
near-wall vortices are mainly found underneath large-scale high-speed streaks. Indeed,
positive values of the modulation indicate that large-scale high-velocity events in the
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outer layer are associated with increased small-scale activity in the wall proximity. One
can then envisage a scenario where local increase of streamwise velocity in an extended
region of the outer layer induces local increase of the mean shear, which results in local
enhancement of turbulence kinetic energy production near the wall.

Finally, the relationships between temperature and velocity fluctuations have been
investigated, and the validity of the set of relations known as Strong Reynolds Analogies
has been put to the test. Consistent with the observations of the velocity and temperature
fields, the u − T correlation is found to be always negative, with modulus close to unity
in the inner layer, and decreasing to about 0.5 in the outer layer as a consequence of
the different behavior of the velocity and temperature streaks. The turbulent Prandtl
number if found to be significantly different from unity, contrary to the prediction of the
standard form of the Strong Reynolds Analogy. On the other hand, a suitably modified
form of Strong Reynolds Analogy which incorporates the effect of variation of the total
temperature is found to better predict the variation of Pr t, at least up to y/δ = 0.5.
In the same region of the wall layer the classical SRA provides good predictions of the
temperature variance as a fraction of the velocity variance, whereas modified analogies
seem to give uniformly good predictions throughout the boundary layer.

We believe that the present effort constitutes the most complete description of the
structure of turbulence at moderately supersonic boundary layers currently available,
and the database itself can be usefully exploited for improving and calibrating turbulence
models for high-speed, high-Reynolds-number flows. Of course, it needs to be completed
with data from simulations at higher Mach number to more completely establish trends
related to the effects of compressibility. Work in this direction is in progress.

The statistics of the database presented in the paper are available on-line at the web
page http://reynolds.dma.uniroma1.it/dnsm2/, together with supporting documen-
tation.

We acknowledge CINECA (Consorzio Interuniversitario per il Calcolo Automatico
dell’Italia Nord Orientale) for the availability of high performance computing resources
and support through the 2010/11 ISCRA Award.
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Jiménez, J. & Pinelli, A. 1999 The autonomous cycle of near–wall turbulence. J. Fluid Mech.
389, 335–359.

Kennedy, C.A. & Gruber, A. 2008 Reduced aliasing formulations of the convective terms
within the Navier-Stokes equations. J. Comput. Phys. 227, 1676–1700.

Kim, J., Moin, P. & Moser, R.D. 1987 Turbulence statistics in fully developed channel flow
at low Reynolds number. J. Fluid Mech. 177, 133–166.

Klebanoff, P.S. 1955 Characteristics of turbulence in a boundary layer with zero pressure
gradient. NACA Report 1247.

Komminao, J. & Skote, M. 2002 Reynolds stress budgets in Couette and boundary layer flows.
Flow Turbul. Combust. 68, 167–192.



51

Kong, H., Choi, H. & Lee, J.S. 2000 Direct numerical simulation of turbulent thermal bound-
ary layers. Phys. Fluids 10, 85–91.

Kovasznay, L., Kibens, V. & Blackwelder, R. 1970 Large-scale motion in the intermittent
region of a turbulent boundary layer. J. Fluid Mech. 41, 283–325.

Lagha, M., Kim, J., Eldredge, J.D. & Zhong, X. 2011 A numerical study of compressible
turbulent boundary layers. Phys. Fluids 23, 015106.

Laufer, J. 1964 Some statistical properties of the pressure field radiated by a turbulent bound-
ary layer. Phys. Fluids 7, 1191–1197.

Maeder, T., Adams, N.A. & Kleiser, L. 2001 Direct simulation of turbulent supersonic
boundary layers by an extended temporal approach. J. Fluid Mech. 429, 187–216.

Mart́ın, M.P. 2004 DNS of hypersonic turbulent boundary layers. AIAA Paper 2004-2337.

Mart́ın, M.P. 2007 Direct numerical simulation of hypersonic turbulent boundary layers. Part
1. Initialization and comparison with experiments. J. Fluid Mech. 570, 347–364.

Marusic, I. & Heuer, W.D.C. 2007 Reynolds number invariance of the structure inclination
angle in wall turbulence. Phys. Rev. Lett. 99, 114504.

Mathis, R., Hutchins, N. & Marusic, I. 2009a Large-scale amplitude modulation of the
small-scale structures in turbulent boundary layers. J. Fluid Mech. 628, 311–337.

Mathis, R., Monty, J.P., Hutchins, N. & Marusic, I. 2009b Comparison of large-scale
amplitude modulation in turbulent boundary layers, pipes, and channel flows. Phys. Fluids
21, 111703.

Monty, J.P., Stewart, J.A., Williams, R.C. & Chong, M.S. 2007 Large-scale features in
turbulent pipe and channel flows. J. Fluid Mech. 589, 147–156.

Morkovin, M.V. 1961 Effects of compressibility on turbulent flows. In Mécanique de la Tur-
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Schlatter, P. & Örlü, R. 2010a Assessment of direct numerical simulation data of turbulent
boundary layers. J. Fluid Mech. 659, 116–126.
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